EFECTIW-ROTER: deep reinforcement learning approach for solving heterogeneous fleet and demand vehicle routing problem with time-window constraints

From National Research Council Canada

DOIResolve DOI: https://doi.org/10.1145/3678717.3691208
AuthorSearch for: ORCID identifier: https://orcid.org/0000-0002-9938-3560; Search for: ORCID identifier: https://orcid.org/0009-0003-7718-4602; Search for: 1ORCID identifier: https://orcid.org/0000-0002-2320-954X; Search for: 1ORCID identifier: https://orcid.org/0000-0001-7870-9448; Search for: ORCID identifier: https://orcid.org/0000-0003-3569-2126
Affiliation
  1. National Research Council of Canada. Digital Technologies
FormatText, Article
ConferenceSIGSPATIAL '24: The 32nd ACM International Conference on Advances in Geographic Information Systems, October 29 - November 1, 2024, Atlanta, Georgia, United States
Subjectcombinatorial optimization; reinforcement learning; attention model; spatial-temporal systems
Abstract
Publication date
PublisherAssociation for Computer Machinery
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier033ee03a-98e2-4657-8142-a8b6f905be1a
Record created2024-12-02
Record modified2024-12-05
Date modified: