Light-weight learning model with patch embeddings for radar-based fall event classification: a multi-domain decision fusion approach

From National Research Council Canada

DOIResolve DOI: https://doi.org/10.1109/RadarConf2351548.2023.10149586
AuthorSearch for: ; Search for: ; Search for: 1ORCID identifier: https://orcid.org/0000-0001-7717-1818; Search for: 1ORCID identifier: https://orcid.org/0000-0003-3152-7510
Affiliation
  1. National Research Council of Canada. Quantum and Nanotechnologies
FunderSearch for: Natural Sciences and Engineering Research Council of Canada (NSERC)
FormatText, Article
Conference2023 IEEE Radar Conference (RadarConf23), May 1-5, 2023, San Antonio, TX, USA
Subjectradar; fall detection; patch-based learning; dempster shafer fusion; multi-domain; vision transformer; multi-layer perceptron; convmixer; training; event detection; computational modeling; radar detection; radar imaging; transformers
Abstract
Publication date
PublisherIEEE
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier130340e4-990a-4515-a699-88028620aa58
Record created2024-09-06
Record modified2024-09-06
Date modified: