A comparative analysis of deep learning models for soil temperature prediction in cold climates

From National Research Council Canada

Download
  1. (PDF, 1.8 MiB)
  2. (PDF, 426 KiB)
DOIResolve DOI: https://doi.org/10.1007/s00704-023-04781-x
AuthorSearch for: ORCID identifier: https://orcid.org/0000-0001-5022-1993; Search for: ORCID identifier: https://orcid.org/0000-0001-5381-8189; Search for: ORCID identifier: https://orcid.org/0000-0002-1219-4362; Search for: ORCID identifier: https://orcid.org/0000-0003-3103-9752; Search for: ; Search for: 1; Search for: 1
Affiliation
  1. National Research Council of Canada. Construction
FormatText, Article
Subjectclimate conditions; comparative study; machine learning; prediction; soil temperature
Abstract
Publication date
PublisherSpringer
Licence
In
NoteErratum published in volume 156, article number 114, 16 January 2025. DOI: 10.1007/s00704-024-05324-8
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier15d7e2d7-81c0-477b-849e-5058ef3389a7
Record created2024-07-10
Record modified2025-07-28
Date modified: