SED2AM: solving multi-trip time-dependent vehicle routing problem using deep reinforcement learning

From National Research Council Canada

DOIResolve DOI: https://doi.org/10.1145/3721983
AuthorSearch for: ORCID identifier: https://orcid.org/0000-0002-9938-3560; Search for: 1ORCID identifier: https://orcid.org/0000-0002-2320-954X; Search for: 1ORCID identifier: https://orcid.org/0000-0001-7870-9448; Search for: ORCID identifier: https://orcid.org/0000-0003-3569-2126
Affiliation
  1. National Research Council of Canada. Digital Technologies
FormatText, Article
Subjectmulti-trip time dependent vehicle routing problem; combinatorial optimization; deep reinforcement learning; attention model
Abstract
Publication date
PublisherAssociation for Computing Machinery (ACM)
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifier6df3c5b2-18ff-4043-8cbc-e887ee44d4d6
Record created2025-05-06
Record modified2025-05-07
Date modified: