| Abstract | Ceramic–nano-metallic composite coatings of Al₂O₃–nano-Ni on an aluminum substrate (Al6061) were obtained using electrophoretic deposition (EPD). Three composite coatings with different ratios of nano-Ni, i.e., 25, 50, and 75%, were obtained. The phase composition of the resulting composite coatings was examined using XRD; this confirmed the existence of alumina and nickel in the composite coatings. The surface morphology and microstructure of the composite coatings were analyzed with SEM, while the chemical composition and phase content were determined through energy-dispersive spectroscopy. The hardness indenter results revealed a high hardness 420 HV for the Ni 25% composite coating However the hardness decreased with an increase in the Ni nanoparticle ratio, reaching a value of 360 HV for the Ni 75% composite coating. Reflectance measurements were conducted using a UV–visible spectrophotometer equipped with an integrating sphere (UV2600), and the composite coating with a Ni ratio of 75% exhibited the lowest reflectance of UV–visible light at <0.035. These results are promising for subsequent investigations into the absorbance of Al₂O₃–nano-Ni composite coatings within the sunlight irradiation wavelength range. |
|---|