Abstract | The thermotropic phase behavior of a homologous series of phosphatidylcholines containing acyl chains with omega-tertiary butyl groups was studied by differential scanning calorimetry, Fourier transform infrared spectroscopy, and 31P-nuclear magnetic resonance spectroscopy (31P-NMR). Upon heating, aqueous dispersions of these lipids exhibit single transitions which have been identified as direct conversions from Lc-like gel phases to the liquid-crystalline state by both infrared and 31P-NMR spectroscopy. The calorimetric data indicate that the thermodynamic properties of the observed transition are strongly dependent upon whether the acyl chains contain an odd- or an even-number of carbon atoms. This property is manifest by a pronounced odd/even alternation in the transition temperatures and transition enthalpies of this homologous series of lipids, attributable to the fact that the odd-numbered compounds form gel phases that are more stable than those of their even-numbered counterparts. The spectroscopic data also suggest that unlike other lipids which exhibit the so-called odd/even effect, major odd/even discontinuities in the packing of the polymethylene chains are probably not the dominant factors responsible for the odd/even discontinuities exhibited by these lipids, because only subtle differences in the appropriate spectroscopic parameters were detected. Instead, the odd/even alternation in the physical properties of these lipids may be attributable to significant differences in the organization of the carbonyl ester interfacial regions of the lipid bilayer and to differences in the intermolecular interactions between the terminal t-butyl groups of the odd- and even-numbered homologues. Our results also suggest that the presence of the bulky t-butyl groups in the center of the lipid bilayer reduces the conformational disorder of the liquid-crystalline polymethylene chains, and promotes the formation of Lc-like gel phases. However, these Lc-like gel phases are considerably less ordered than those formed by saturated, straight-chain lipids. |
---|