Abstract | We demonstrate that nanometer-scale TiN coatings deposited by atomic layer deposition (ALD), and to a lesser extent by magnetron sputtering, will significantly improve the electrochemical cycling performance of silicon nanowire lithium-ion battery (LIB) anodes. A 5 nm thick ALD coating resulted in optimum cycling capacity retention (55% vs. 30% for the bare nanowire baseline, after 100 cycles) and coulombic efficiency (98% vs. 95%, at 50 cycles), also more than doubling the high rate capacity retention (e.g. 740 mA h g-¹ vs. 330 mA h g-¹, at 5 C). We employed a variety of advanced analytical techniques such as electron energy loss spectroscopy (EELS), focused ion beam analysis (FIB) and X-ray photoelectron spectroscopy (XPS) to elucidate the origin of these effects. The conformal 5 nm TiN remains sufficiently intact to limit the growth of the solid electrolyte interphase (SEI), which in turn both improves the overall coulombic efficiency and reduces the life-ending delamination of the nanowire assemblies from the underlying current collector. Our findings should provide a broadly applicable coating design methodology that will improve the performance of any nanostructured LIB anodes where SEI growth is detrimental. © 2013 The Royal Society of Chemistry. |
---|