Abstract | A single Bacillus thuringiensis strain can harbor numerous different insecticidal crystal protein (cry) genes from 46 known classes or primary ranks. The cry1 primary rank is the best known and contains the highest number of cry genes which currently totals over 130. We have designed an oligonucleotide-based DNA microarray (cryArray) to test the feasibility of using microarrays to identify the cry gene content of B. thuringiensis strains. Specific 50-mer oligonucleotide probes representing the cry1 primary and tertiary ranks were designed based on multiple cry gene sequence alignments. To minimize false-positive results, a consentaneous approach was adopted in which multiple probes against a specific gene must unanimously produce positive hybridization signals to confirm the presence of a particular gene. In order to validate the cryArray, several well-characterized B. thuringiensis strains including isolates from a Mexican strain collection were tested. With few exceptions, our probes performed in agreement with known or PCR-validated results. In one case, hybridization of primary- but not tertiary-ranked cry1I probes indicated the presence of a novel cry1I gene. Amplification and partial sequencing of the cry1I gene in strains IB360 and IB429 revealed the presence of a cry1Ia gene variant. Since a single microarray hybridization can replace hundreds of individual PCRs, DNA microarrays should become an excellent tool for the fast screening of new B. thuringiensis isolates presenting interesting insecticidal activity. |
---|