Abstract | Three additional marine toxins, spirolides A (1), C (3), and 13-desmethyl-C (7), were isolated from contaminated scallops and phytoplankton collections obtained from a Nova Scotian aquaculture site, as well as from batch cultures of the dinoflagellate Alexandrium ostenfeldii obtained as a single-cell isolate from these phytoplankton assemblages. The structures of these new spirolide derivatives, characterized by mass spectrometry and NMR, indicate a close relationship with spirolides B (2) and D (4) isolated previously from contaminated shellfish in the same area. All of these compounds display “fast-acting” toxicity in the traditional bioassay used for monitoring shellfish, and this is related to the presence of a cyclic imine function in all these compounds. Those spirolides containing a vicinal dimethyl group in the seven-membered ring are resistant to oxalic acid hydrolysis, whereas those that do not are readily hydrolyzed. These observations suggest that the extra methyl group on the seven-membered imine ring of 3, 4, and 7 appears to block the process of imine hydrolysis perhaps by stereochemical interference. |
---|