A neural network-based surrogate model to predict building features from heating and cooling load signatures

From National Research Council Canada

DOIResolve DOI: https://doi.org/10.1080/19401493.2024.2375304
AuthorSearch for: ; Search for: ORCID identifier: https://orcid.org/0000-0003-3214-700X; Search for: 1ORCID identifier: https://orcid.org/0000-0001-8343-0812; Search for: 1
Affiliation
  1. National Research Council of Canada. Construction
FunderSearch for: National Research Council Canada
FormatText, Article
Subjectsurrogate model; inversemodel; artificial neuralnetwork; remote buildingcharacterization; retrofitdecision-making; ensemblelearning
Abstract
Publication date
PublisherTaylor & Francis
In
LanguageEnglish
Peer reviewedYes
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifierc0ec0509-f2b6-4383-9be9-8501c9d36787
Record created2024-10-04
Record modified2024-10-04
Date modified: