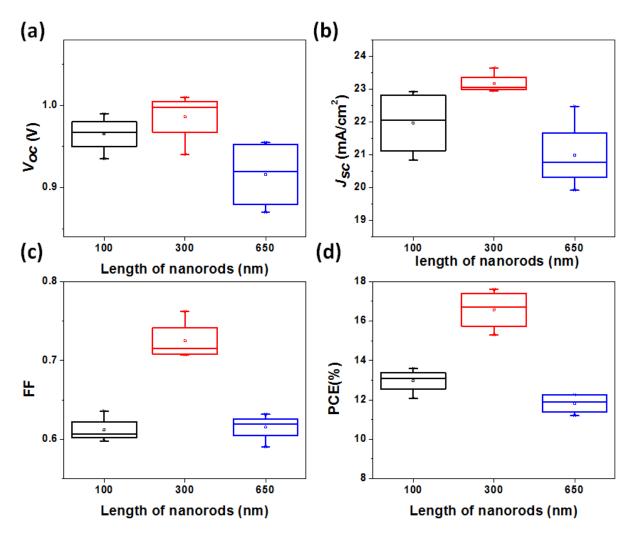
Supporting Information

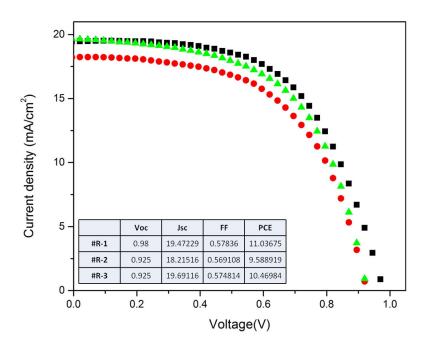
Impact of morphology of hydrothermally grown TiO₂ nanorods on electron transporting property in perovskite solar cells

Ujwal Kumar Thakur¹, Abdelrahman M. Askar¹, Ryan Kisslinger¹, Benjamin Wiltshire^{1,2}, Piyush Kar¹, Karthik Shankar^{*,1,2}

¹Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta, T6G 1H9, Canada


²NRC National Institute for Nanotechnology, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada

*Correspondence


Karthik Shankar, Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta, T6G 1H9, Canada

E-mail: kshankar@ualberta.ca

Keywords: Halide perovskite solar cells, monocrystalline semiconductor nanowires, nanostructured electron transporting layer, TiO₂ nanorods (TNRs), TiO₂ nanoparticles (TNPs), solvothermal synthesis, time-resolved photoluminescence.

Figure S1. Summary of the performance of halide perovskite solar cells for different nanorod morphologies: (a) V_{oc} , (b) J_{sc} , (c) FF and (d) PCE. All the performance data were measured at AM 1.5G with an intensity of 100 mWcm⁻².

Figure S2. J-V curves of halide perovskite solar cells constructed using nanorods ~ 150 nm in width and ~ 1 µm in length, formed using 1000 µl of TBO in the hydrothermal precursor solution. The data were measured at AM 1.5G with an intensity of 100 mW cm⁻².

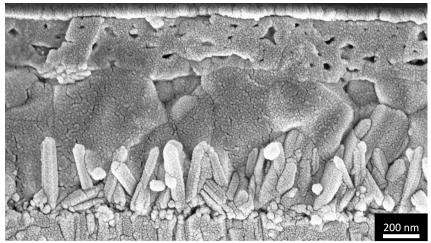


Figure S3. Cross-sectional FESEM image of PSC based on 300 nm long TiO₂ nanorods.

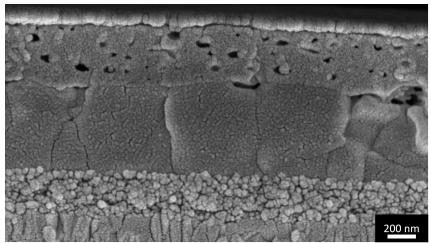


Figure S4. Cross-sectional FESEM image of PSC fabricated over 200 nm of mesoporous TiO₂.

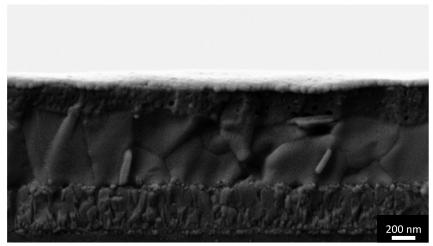


Figure S5. Cross-sectional SEM image of PSC fabricated over compact TiO₂.

Table S1. The fitting parameters for PL decays obtained for solar cells prepared from different electron transporting layers where, $I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$.

	$ au_I(\mathrm{ns})$	$ au_2$ (ns)	R-squared	Reduced Chi- squared
Planar	2.4 (48 %)	0.42 (52 %)	0.9272	2.50E-05
TNPs	1.36 (35 %)	0.13 (65 %)	0.9726	7.18E-04
TNRs	0.27 (42 %)	0.09 (58 %)	0.9985	2.20E-05