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Material 
 
 

All reagents were purchased from Sigma-Aldrich and used without further purification unless 

otherwise stated. All solvents, except acetone, were dried using an Innovative Technology, Inc. 

Grubbs-type solvent purification system. Acetone was dried over molecular sieves (3 Å), 

degassed via 3 freeze-pump-thaw cycles using an argon charged double manifold. All 

solvents and liquid reagents were degassed via 3 freeze-pump-thaw cycles using an argon 

charged double manifold and stored in MBraun glove box with nitrogen working gas. 

 

 
 

Material Synthesis 
 

 Synthesis of CaGe2 
 
 
A stoichiometric mixture of calcium (Sigma, 99.0 %) and germanium (Sigma, 99.999 %) was 

pressed to a pellet and subsequently melted together in an arc furnace installed in an argon- 

filled glove box (MBraun, H2O and O2 levels < 0.1 ppm). To ensure effective homogenization, 



 

3 

the resulting silver, metallic regulus was melted upon simultaneous heating from the top and 

bottom in the arc furnace, ground thoroughly in an agate mortar, pressed again to a pellet, 

melted from both sides in the arc furnace and ground into a powder again.
1 The resulting 

product was evaluated using X-ray powder diffraction and XPS. 

 
 

Synthesis of HGe-flakes 
 

 

All manipulations were performed in an argon atmosphere. A standard Schlenk flask was 

charged with 100 mL of concentrated HCl. After cooling to -30 ˚C in a low temperature 

freezer, CaGe2 (1.00 g) was added. The mixture was maintained at -30 ˚C for at least 7 d and 

shaken 10 times per day at regular intervals.
2 Then the reaction mixture was filtered using a 

glass frit under nitrogen to provide shiny metallic shiny flakes that were washed with 3 times 

dry, degassed acetone followed by drying in vacuum on the Schlenk line. The resulting HGe-

flakes were characterized using XRD and FTIR and stored in a nitrogen filled glove box until 

further use. 

 
 

Radical-initiated hydrogermylation 
 

 

In a nitrogen charged glove box, HGe-flakes (5 mg) were transferred into a dry 5 mL Biotage
®

 

microwave tube. Dry degassed toluene (2 mL), AIBN (10 mg) and 1-dodecene (1 mL, 4.5 

mmoles) were added and the tube was sealed. The reaction mixture was subsequently 

ultrasonicated in a bath sonicator (Fisher Scientific FS30) for 3-hours after which it was 

heated to and maintained at 65 ˚C and stirred for 12 hours. The resulting red suspension was 

transferred to a PTFE centrifuge tube, methanol (40 mL) was added and the mixture was 

centrifuged (12,000 rpm for 10 min) to yield a deep red pellet. The solid was redispersed in a 

minimal amount of toluene (2 mL). Methanol (40 mL) was added and the mixture was 

centrifuged (12,000 rpm for 10 min). This suspension/precipitation procedure was repeated 

twice after which the dodecyl-GeNSs were freeze dried from benzene and finally dispersed in 

toluene. 
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 Thermally-Induced Hydrogermylation 

 

 

In a nitrogen charged glovebox, HGe-flakes (5 mg) were transferred into a dry 5 mL Biotage
® 

microwave tube. 1-dodecene (2 mL, 9.0 mmoles) was added and the tube was sealed. The 

reaction mixture was subsequently ultrasonicated in a bath sonicator (Fisher Scientific FS30) 

for 3-hours after which it was heated to and maintained at 190 ˚C for 12 hours. After the 

reaction, the dark brown mixture was transferred to a PTFE centrifuge tube, methanol (40 

mL) was added and the mixture was centrifuged (12,000 rpm for 10 min). The solid was 

redispersed in a minimal amount of toluene (2 mL). Methanol (40 mL) was added and the 

mixture was centrifuged (12,000 rpm for 10 min). This suspension/precipitation procedure 

was repeated twice after which the dodecyl-GeNSs were freeze dried from benzene and finally 

dispersed in toluene. 

 

 
 

Materials Characterization 
 

 
Fourier Transformed Infrared (FT-IR) Spectroscopy 

 

 

FT-IR Spectra were acquired using a Thermo Nicolet Magna 750 IR Spectrometer. Samples 

were prepared by drop coating a toluene dispersion of the material of choice onto an 

electronic- grade Si-wafer (N-type, 100 surface, 100 mm thickness and 10 ohm·cm resistivity) 

and dried under nitrogen atmosphere. 

 
 

Electron Microscopy 
 

 

Bright-field transmission electron microscopy (TEM) images were acquired using a Hitachi- 

9500 or JEOL JEM-ARM200CF S/TEM electron microscope at accelerating voltages of 300 

kV or 200 kV, respectively. HRTEM images obtained from a Hitachi-9500 were processed using 

Gatan Digital Micrograph software (Version 3.22.1461.0). HRTEM images were enhanced with 

commercial software HREM-Filters Pro/Lite v.2.5.1 equipped in Gatan Digital Micrograph. The 

CrystalKitX was employed for the selected area electron diffraction (SEAD) pattern simulation. 
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The crystallographic data using for the simulation is from Cultrara et al. 
3
 TEM samples were 

prepared by depositing a drop of GeNS suspensions in toluene onto a holey/lacey carbon coated 

copper grid (Electron Microscopy Inc.)The grid was kept in a vacuum chamber for at least 24 

h prior to data collection.  

 
 

Atomic Force Microscopy (AFM) 
 

 

AFM was performed using a Bruker Dimension EdgeTM system with NanoDrive version 8.02 

software. The tapping mode cantilever was purchased from Bruker (Resonance frequency: 300 

kHz, force constant 42 N/m). Thin films of GeNSs (5 mg of exfoliated sheets in 2 mL of 

toluene) were spin coated (90 seconds, 1000 rpm) onto a Si (111) wafer substrate that had 

been cleaned using a standard Piranha protocol. 

 
 

X-ray Photoelectron Spectroscopy (XPS) 
 

 

XPS was performed using a Kratos Axis Ultra instrument operating in energy spectrum 

mode at 210 W. Samples were prepared by depositing a suspension of the  material of choice 

onto a copper foil substrate followed by drying in air. Prior to analysis, the Ge (111) wafer 

reference was cleaned by immersing in 30% v/v H2O2 for 90 s followed by 10 minutes etching 

in 10% v/v HF. The base and operating chamber pressure were maintained at 10
-7

 Pa. A 

monochromatic Al K source (λ = 8.34Å) was used to irradiate the samples, and the spectra 

were obtained with an electron take-off angle of 90˚. CasaXPS software (VAMAS) was used 

to interpret high-resolution spectra. All spectra were internally calibrated to the C1s emission 

(284.8 eV). After calibration, a Shirley-type background was applied to remove most of the 

extrinsic loss structure. 

 
 

Thermogravimetric Analysis (TGA) 
 

 

TGA was performed using a Mettler Toledo Star TGA/DSC system. The sample being 

evaluated was placed in a Pt pan and heated under N2 atmosphere from 35 to 700 ˚C at a 

rate of 10 ˚C/min. 
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Powder X-ray Diffraction (XRD)  
 

 

PXRD data were collected using an Inel MPD MultiPurpose Diffractometer equipped with a 

CPS 120 curved position sensitive X-ray detector and Cu K α (8.047 KeV energy) source or 

Stoe STADI P diffractometer equipped with a Ge(111) monochromator for Cu Kα radiation (λ 

= 1.54056 Å) and a Dectris MYTHEN DCS 1K solid-state detector. CaGe2 was ground in an 

agate mortar and filled into 0.3 mm glass capillaries which were then sealed. The sample was 

measured within a 2θ-range of 5–87.5° (PSD steps, 1.5°; time/step,15 s).GeH powders were 

deposited on an amorphous silica holder.  

 

Diffuse Reflective Spectroscopy  

 

Diffuse Reflective spectroscopy data was collected using an Agilent Technologies
TM

 Cary 

Series (Model# 5000) UV-Vis-NIR spectrophotometer. Samples were prepared by drop 

coating a toluene dispersion of the material of choice onto an electronic- grade Si-wafer (N-

type, 100 surface, 100 mm thickness and 10 ohm·cm resistivity) and dried under nitrogen 

atmosphere. 

 

Raman Spectroscopy  
 

 

Raman spectroscopy was performed using a Renishaw inVia Raman microscope equipped with 

a 514 nm diode laser operating at a power of 3.98 mW on the sample. Samples were 

prepared by mounting the suspension on gold-coated glass. 

 
 

Surface Coverage 
 

The thickness of the carbon overlayer can be calculated using the overlayer model described 

in literature:
4–6 

( IOv
IGe

)(SFGe
SFOv

)(rGe
rOv

)= (1- e
-

dOv

lOv cosq

e
-

-dOv

lGe cosq

)                                                                  (S1) 
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where I is the peak intensity, ρ is the atomic volume density, SF is the sensitivity factor, dOv is 

the overlayer thickness, λ is the photoelectron escape length, and θ is the photoelectron take-

off angle determined by the surface orientation relative to the analyzer. The subscript Ov 

signifies an overlayer component; the subscript Ge signifies a Ge component. The take-off angle 

(θ) is 0˚for this work, and atomic volume density is assumed identical where each Ge atom is 

bonded to one alkyl chain and three other Ge atoms, giving Equation S2: 

 

 

( IOv
IGe

)(SFGe
SFOv

)= (1- e
-
dOv

lOv

e
-

-dOv

lGe

)

                                                    

(S2) 

 

Extending this structure to a NS provides a Ligand-Sheet-Ligand Model for functionalized Ge 

NSs: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This model describes a nanosheet that is covalently bonded to two overlayers at both sides, 

where the thickness of the each carbon overlayer can be determined using Equation S3: 

 

( IOv
IGe

)(SFGe
SFOv

)=
(1- e

-
dC-C+dGe

lC-C )(1+ e
-

(dC-C+dGe )

lC-C )

(1- e
-
dGe

lGe )(e
-
dC-C

lGe )                                              

(S3) 

 

From Equation S3, (1- e
-
dC-C+dGe

lC-C )describes signal generated in dC-C layer, (1+ e
-

(dC-C+dGe )

lC-C )describes 

signal collected from d1 (= 1) and d2 layers, (1- e
-
dGe

lGe )describes signal generated from dGe layer, 

and  (e
-
dC-C

lGe ) describes signal collected from d2 layer. While EquationS3 describes the relationship 

dGe	

dC-C	

d3	

d1	

d2	
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between carbon and germanium intensities collected from a single GeNSs (n = 1), photoelectrons 

generated from the sheets stacked beneath can also reach the detector and must be considered.  

When two layers of functionalized GeNSs are involved (n = 2), the correlation of carbon layer 

thickness dC-C and germanium layer thickness dGe can be expressed as Equation S4: 

 

( IC-C

IGe
)( SFGe
SFC-C

)=
(1- e

-
dC-C+dGe

lC-C )(1+ e
-

(dC-C+dGe )

lC-C + e
-

(2dC-C+dGe )

lC-C + e
-

(2dC-C+2dGe )

lC-C )

(1- e
-
dGe

lGe )(e
-
dC-C

lGe + e
-

2dC-C

lGe )
          (S4) 

 

When three layers of functionalized GeNSs are involved (n = 3) Equation S5 is used: 

( IC-C

IGe
)( SFGe
SFC-C

)=

(1- e
-
dC-C

lC-C )( e
-

(2m-1)×dC-C

lC-C

m=1

3

å + e
-

2m×dC-C+m×dGe

lC-C

m=0

2

å )

(1- e
-
dGe

lGe )( e
-

(2m+1)×dC-C+m×dGe

lGe

m=0

2

å )
                       (S5) 

Equation S6 give photoelectrons collected from the top n layers of functionalized GeNSs: 

( IC-C

IGe
)( SFGe
SFC-C

)=

(1- e
-
dC-C

lC-C )( e
-

(2m-1)×dC-C

lC-C

m=1

n

å + e
-

2m×dC-C+m×dGe

lC-C

m=0

n-1

å )

(1- e
-
dGe

lGe )( e
-

(2m+1)×dC-C+m×dGe

lGe

m=0

n-1

å )
                       (S6) 
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Figure S1: Experimental (black) and theoretical (red) powder diffraction patterns of CaGe2 . 
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Figure S2: XRD patterns of as-synthesized HGe-flakes. The reflections of the regularly stacked 

sheets can be indexed by tr6 CaGe2 unit cell with a = 3.99 Å and c = 33.0 Å. 
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            Figure S3: EDX output for HGe-flakes. 
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Figure S4: Survey X-ray photoelectron spectrum of HGe-flakes. 
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Figure S5: Diffuse reflectance spectroscopy of HGe flakes (black), radical- induced functionalized 

(red) and thermally-induced functionalized (blue) dodecyl-GeNSs.  
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Figure S6: Survey X-ray photoelectron spectra of CaGe2 (top), dodeceyl-terminated GeNSs 

prepared by thermally-induced hydrogermylation (middle) and dodeceyl-terminated GeNSs 

prepared by radical-initiated hydrogermylation (bottom). 
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Figure S7: High-resolution X-ray photoelectron spectra of CaGe2 (top), dodecyl-terminated 

GeNSs prepared by thermally-induced hydrogermylation (middle) and dodecyl-terminated 

GeNSs prepared by radical-initiated hydrogermylation (bottom). 
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Figure S8. Electron diffraction pattern simulation results for non-fully exfoliated GeNSs using a) 

h2 and b) tr6 unit cell parameters. The diffraction patterns shown in the red boxes are enlarged by 

changing camera height during simulation.  
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Figure S9: Top: Bright-field TEM images (a,b) and HRTEM (c) of dodecyl-terminated GeNSs 

prepared by thermal hydrogermylation. Bottom: bright-field TEM images (d,e) and HRTEM (f) 

of dodecyl-terminated GeNSs prepared by radical-initiated hydrogermylation. 

a) b) c) 

d) e) f) 
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Figure S10: High-resolution X-ray photoelectron spectra of dodecyl-terminated GeNSs Ge 3d 

(left) and C 1s (right) signals, prepared by thermally-induced hydrogermylation (top) and 

dodecyl-terminated GeNSs prepared by radical-initiated hydrogermylation (bottom) 
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