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Efficient spatially resolved multimode quantum memory
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Light storage in atomic ensembles has been implemented successfully, but the retrieval efficiency can be

low. We propose to improve this efficiency with appropriately phase-matched backward propagating retrieval.

This method allows for easy spatial filtering of the retrieved light; in addition, multiple optical modes can be

stored in the transverse momentum of the ensemble. We model walk-off effects with a full numerical simula-

tion, and confirm the applicability of the scheme.
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I. INTRODUCTION

Atomic ensembles represent an increasingly useful tool

for manipulating the propagation �1� and quantum state �2�
of optical fields. In particular, the existence of long-lived

coherences affords the ability to temporarily store a light

pulse as a stationary excitation within an ensemble. This kind

of storage preserves quantum correlations �3–5� and forms a

key component in the technology required for the implemen-

tation of quantum communication protocols �6,7� and quan-

tum computing architectures �8�. The optimization of the ef-

ficiency of storage into, and retrieval from, such a quantum

memory is the subject of intense research �9–11�, since the

utility of the technology ultimately depends on the favorable

scaling of losses for memories operated in series.

In this paper, we present a simple scheme to improve the

efficiency of retrieval from an ensemble quantum memory;

we check our predictions against a full numerical simulation,

and we consider a generalization of the procedure to the

storage of multiple optical modes. We will show that high

efficiency can be achieved provided the optical fields in-

volved are not focused too tightly, and that the use of wide

collimated beams, if sufficient intensity is available, allows

for efficient multimode storage.

First we introduce the standard storage protocol, and we

discuss the factors limiting the efficiency of retrieval from a

memory. In the following, we neglect a class of ensemble

memories based on photon echoes �9,12�, to which our

scheme is not directly applicable �although the problems out-

lined below persist; other techniques are required to address

them �13,14��. We also omit any discussion of continuous

variable quantum memories �15–18�.

II. SYSTEM

A simple system in which light can be stored for extended

periods consists of an ensemble of identical three-level at-

oms with a �-type structure �see Fig. 1�a��. The excited state

�2� is coupled strongly to the electromagnetic field, but is

therefore noisy and short-lived, with a coherence lifetime

characterized by the decay rate �. The metastable state �3�
has no strong couplings to the state �1�, and is long-lived. At

the start of the memory interaction, all the atoms are in state

�1�, which we call the initial state. Later we will see that

certain advantages accrue when �1� lies energetically above

�3�, although this is somewhat nonstandard. An incident sig-
nal pulse is stored as an excitation of the state �3�; the inter-
action is mediated by the state �2�, which provides the strong

coupling necessary for efficient storage. In general, this is

accomplished by the application of an intense auxiliary con-

trol field tuned into two-photon resonance with the signal

field, as shown in Fig. 1�a�. If both signal and control fields

are resonant with the excited state, storage is realized via

electromagnetically induced transparency �EIT� �19–22�, in

which adiabatic reduction of the intensity of the control field

dynamically slows the signal field to a standstill. If the fields

are detuned far from resonance by a common detuning �, the

signal field is coherently absorbed in a two-photon Raman

interaction �11,23–25�. In both cases, the signal field is

mapped to a collective excitation known as a spin wave, with

a wave function whose spatial distribution over the ensemble

depends on the transverse profile and temporal shape of the

control and signal pulses. Some time later, the stored excita-

tion may be converted back into an optical pulse by a second

application of the control field.

For the case in which the signal and control pulses propa-

gate in the same direction, a one-dimensional analysis pre-

dicts the control pulse shape that maximizes the storage ef-

ficiency �24,25�, and this kind of optimization for EIT has

recently been successfully demonstrated in the laboratory

�26,27�. In general, the shape of the spin wave generated by

the optimized storage process is highly asymmetric along the

propagation direction �see the inset of Fig. 1�b��, as might be

expected from Beer’s-law absorption. The spin wave ampli-

tude is large at the input face of the ensemble, but decays

away toward the exit face. By contrast, the retrieval process

is optimized when the spin wave has the complementary

FIG. 1. �Color online� �a� The level structure of the atoms in a

typical ensemble memory. �b� A schematic of the storage process, in

which an incident signal field is converted to a distributed excitation

within the ensemble known as a spin wave.
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shape, with a small initial amplitude growing with propaga-

tion distance, consistent with a description of the retrieval of

the signal field as a straightforward gain process. If retrieval

is attempted in the forward direction, the efficiency is limited

by poor overlap of the generated spin wave with the optimal

one. The above argument suggests that backward retrieval

should be preferable, since in this case the input and exit

faces of the ensemble are switched, and the generated spin

wave is optimal for retrieval. This space-reversal symmetry

is a direct consequence of the time-reversal symmetry of the

Hamiltonian dynamics that govern the interaction �24,25�.
However, a difficulty arises if the energies of the states �3�

and �1� are different. In that case, the frequencies �s, �c of

the signal and control fields differ, and the difference in their

momenta is taken up by the spin wave, which therefore ac-

quires a spatially varying phase. If this phase is not conju-

gated before backward retrieval is attempted, the desired re-

trieval process cannot conserve momentum—that is to say it

is not phase matched—and the efficiency suffers �24,25�.
There are good practical reasons for using systems where

states �1� and �3� are nondegenerate, since this renders the

bright control and weak signal fields spectrally distinct, and

so the above phase-matching issue is relevant to a wide class

of possible storage media.

III. PHASE MATCHING

Here we present a scheme that ameliorates the above dif-

ficulty, while preserving a large overlap of the spin wave

generated by the storage process with the optimal spin wave

for retrieval. This allows for high memory efficiency even

when the states �1� and �3� have a large energy splitting, so

the signal and control fields can be spectrally filtered with

high contrast. Furthermore, an angle is introduced between

the signal and control beams, so that the two fields may also

be spatially filtered.

Phase matching is a well-known problem in nonlinear op-

tics �28�, and although complex in general, it becomes

simple in atomic vapors, where the absence of natural bire-

fringence removes many of the more involved geometric

considerations. Correlations arising from phase-matched

light-scattering in gases are routinely used in biomedical and

industrial sensing �29,30� and have more recently been used

to generate entangled photon pairs �31,32�. We now provide

details of a simple phase-matching scheme for the quantum

storage problem that addresses the issue of momentum con-

servation discussed above while keeping the deviations from

a collinear geometry small. Let the signal field have wave

vectors ks and ks� at storage and retrieval, respectively. The

corresponding control field wave vectors will be denoted by

kc and kc�. The fields need not be collinear, but for simplicity

we restrict them to be coplanar. The spin wave generated by

the storage process acquires a wave vector �=ks−kc. Upon

retrieval, the phase-matching condition ks�=�+kc� defines the

unique direction into which the signal field is emitted with

high efficiency �see Fig. 2�a��. Assuming for the moment that

the frequencies of the control and signal fields are fixed, the

orientation of ks� is completely determined by the angle �
between ks and kc during storage �33�. It is now necessary to

choose this angle so as to maximize the spatial overlap of the

generated and optimal spin waves. That is, we should aim to

approximate as nearly as possible collinear storage, followed

by backward retrieval. In this arrangement, we operate as

close to the dynamic optimum as is compatible with kine-

matic constraints.

Heuristically, it is clear that choosing � so that �ks�cos �
= �kc� comes close to satisfying our requirements �see Fig.

2�b��. Here the signal field is angled so that � is orthogonal

to kc. When the direction of the control is reversed for re-

trieval, no phase mismatch is introduced, and the signal field

is retrieved at the same angle � with respect to the retrieval

control pulse. We also consider the possibility that the stor-

age state �3� is energetically lower than the initial state �1�. In

this case, efficient phase-matched retrieval is achieved by

choosing � so that �kc�cos �= �ks�.
The control field couples states �2� and �3�, whose popu-

lations remain negligible, so it travels at the speed of light c,

and we have �kc�=kc=�c /c. Interaction with the resonance

�2� induces a phase shift on the signal field, however, since it

couples to the populated initial state �1�, so that �ks�=ks

=�s /c−kd, with kd=d�� / ��2+�2�L, where d is the resonant

optical depth of the ensemble �25� and L is the ensemble

length. Dispersion vanishes exactly on resonance, so for EIT

we recover ks=�s /c. For far-detuned Raman storage, the ma-

terial dispersion is generally small but significant. Our pro-

posed scheme for efficient operation of both EIT and Raman

memories is summarized by the choice

� = cos−1�r�, r = min�ks/kc,kc/ks� . �1�

We have not considered the effects of decoherence on the

spin wave during the storage period; in general, it is essential

that dissipative processes be effectively eliminated if quan-

tum memories are to become a viable technology. Nonethe-

less, it should be noted that in memories based on atomic

vapor, diffusion of the atoms tends to wash out high spatial

frequencies in the amplitude of the spin wave. Therefore, the

efficiency of phase-matched retrieval may suffer if �
�

=2� / ����D, where D is the distance over which atoms dif-

fuse during the storage time �3,33�. These considerations do

not apply to solid-state ensemble memories, however, since

the absorbers are stationary.

Although we have used the results of one-dimensional

treatments �24,25� to justify the assertion that collinear stor-

age followed by backward retrieval is ideal, we cannot check

the performance of our phase-matching scheme using such

models. In particular, it is clear that as soon as an angle is

introduced between the signal and control fields, walk-off

will limit the size of the region over which the fields overlap,

and therefore the memory efficiency will depend on the rela-

)b()a(

FIG. 2. �Color online� �a� A general phase-matching diagram for

the combined storage and retrieval processes. �b� The phase-

matching diagram for our proposed scheme.
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tive widths of the beams used. To confirm the efficacy of our

approach, we performed numerical simulations of the

memory interaction in two spatial dimensions. Geometric

walk-off, diffraction, and dispersion are correctly modeled,

and the efficiency of the combined storage and retrieval pro-

cess is examined as a function of the splitting �s−�c be-

tween the states �3� and �1� for both Raman and EIT memory

protocols. We present the results below; details of the nu-

merical model can be found in Appendix B.

IV. RESULTS

We simulated storage, followed by retrieval, according to

the geometry specified in Fig. 2�a�, over a range of angles �
between the signal and control, and over a range of energy

splittings between the states �1� and �3�. Below we compare

the angles at which the memory efficiency is maximized with

our prediction in Eq. �1�. We then investigate how these

maximal efficiencies compare with the best efficiencies

achievable using a collinear geometry.

Figure 3 shows the angle � at which the combined effi-

ciency of storage followed by phase-matched backward re-

trieval is optimized, as a function of the phase mismatch

	
	��c−�s�L /c due to nondegeneracy of the initial and

storage states. We borrow parameters from a cesium en-

semble memory, with optical frequencies in the near-

infrared, and an aspect ratio �=L /ws
300, with ws the sig-

nal beam waist. For an ensemble length of L
2 cm, �	
�

4 corresponds roughly to the ground-state hyperfine fre-

quency splitting in cesium, around 10 GHz. The angles in

Fig. 3 are extremely small; this level of sensitivity is typical

of phase-matched processes. But angle tuning with this de-

gree of precision is possible with conventional optical

mounts.

We present the results of two simulation runs: one in

which the control beam waist wc is identical to the signal

waist ws, and one in which the control beam is twice as

wide—with the control pulse energy increased by a factor of

4 so that the control field intensity is the same in both cases.

As might be expected, the phase-matching scheme of Eq. �1�
correctly predicts the optimal angles for the latter case,

where walk-off is mitigated by the loose control focusing.

The prediction is less accurate for the former case. The ma-

terial dispersion in the Raman protocol is responsible for

shifting the results so that an optimal angle of �=0 is ob-

tained for nonzero phase mismatch 	
.

Figure 4 shows the variation in the optimal memory effi-

ciency with phase mismatch, for both EIT and Raman pro-

tocols with both tight and loose control focusing. We used

temporal profiles for the signal fields to be stored that are

predicted, by a one-dimensional treatment, to give optimal

storage efficiency when �=0 �see Appendix A for details�.
Although small improvements over the analytic phase-

matching scheme are possible when the control is tightly

focused, in general use of the scheme produces near-optimal

results. As expected, the memory efficiency is always highest

for 	
 such that �=0, since then walk-off is eliminated. The

efficiency falls as a phase mismatch is introduced, but there

is a marked difference between the behavior for negative and

positive 	
, corresponding to the storage state �3� lying en-

ergetically above and below the initial state �1�, respectively.

More precisely, the important quantity is the momentum mis-

match 	
+kdL; the phase-matching scheme is effective for

positive momentum mismatches 	
�−kdL, but it fails when

the momentum mismatch is negative, 	
�−kdL. In the EIT

protocol, the material dispersion vanishes and effective phase

matching requires 	
�0. For the Raman case shown, the

ensemble refractive index is significant, and phase matching

starts to fail for 	

2. This asymmetry is naturally ex-

plained by considering the spatial distribution of the spin

wave deposited by the signal field as it is stored. In the case
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FIG. 3. �Color online� Comparison of numerical results for the

optimal angle � with the prediction in Eq. �1� �solid line�. The filled

circles correspond to tight control focusing, with wc=ws; the open

diamonds correspond to loose focusing, with wc=2ws. We plot the

results for a typical EIT protocol in �a�: the signal pulse bandwidth

is of order �, the ensemble optical depth is d=30. In �b� we present

equivalent results for a Raman protocol, with the larger optical

depth of d=300. The signal bandwidth is of order 10� and the

detuning is �=150�.
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FIG. 4. �Color online� Memory efficiencies versus the phase

mismatch 	
. �a� and �b� contain the results for the EIT protocol,

with tight and loose focusing, respectively. �c� and �d� report the

results for the Raman protocol for tight and loose focusing. The

solid lines represent the efficiencies achieved if the angles predicted

by Eq. �1� are used. The filled circles are the best efficiencies

achievable. The dotted lines delimit the optimal efficiency attain-

able using collinear backwards retrieval, calculated using the one-

dimensional theory described in Appendix A. The dashed straight

lines denote the efficiencies achieved using collinear forwards

retrieval.
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of positive momentum mismatch, the retrieved signal field
propagates along the same axis as the stored signal field, and
the entire length of the spin wave contributes in the retrieval
process. For negative momentum mismatch, as shown in Fig.
2, the retrieved signal field overlaps only partially with the
spin wave—which occupies a narrow region parallel to the
propagation direction of the stored signal—experiencing
commensurately lower gain.

The straight dashed lines in Fig. 4 indicate the efficiency
achieved if � is set to zero, and retrieval is undertaken in the
forward direction. This efficiency is generally low, due to
poor overlap of the spin wave with the optimal mode for
retrieval, but it is independent of the phase mismatch 	
,
since momentum is automatically conserved in this configu-
ration. Using a one-dimensional analysis, it is possible to
predict the signal pulse shape that optimizes the combined
efficiency of collinear storage followed by forwards retrieval
�25� �see Appendix A for details�. For the EIT protocol, these

“forward” pulse shapes perform better than the “backward”

pulse shapes designed to optimize storage with backward

retrieval, and so the “forward” pulse shapes are used in plots

�a� and �b� of Fig. 4. However, for the Raman protocol

shown, the “forward” pulse shapes perform worse than the

“backward” pulse shapes, and therefore we used the “back-

ward” pulse shapes in plots �c� and �d�. The off-resonant

Raman protocol relies on the intense control to mediate the

coupling of the signal field to the ensemble, so the memory

efficiency is sensitive to diffraction, which reduces the con-

trol intensity toward the ends of the ensemble. This explains

why the “backward” pulse shapes are more effective for the

Raman protocol than the “forward” pulse shapes, since the

latter are designed to redistribute the spin wave so that it has

a large amplitude toward the back end of the ensemble, and

this is precisely where the memory interaction is weakened

by diffraction. For wider control beams, with wc�2.4ws, we

verified that the “forward” pulses do indeed perform better

than the “backward” pulses, since diffraction becomes neg-

ligible. EIT would appear to be less sensitive to diffraction,

since small changes in the control intensity modify the signal

group velocity, but not the strength of its coupling to the

atoms.

The dotted lines in Fig. 4 represent the maximum effi-

ciency achievable for collinear backward retrieval, as pre-

dicted by a one-dimensional analysis �see Appendix A for

details�. This efficiency falls rapidly as the momentum mis-

match increases. In the case of tight control focusing, diffrac-

tion reduces the memory efficiency significantly below the

one-dimensional optimum, even for �=0. When the control

is loosely focused, however, the efficiency rises significantly,

exceeding the best performance possible with any collinear

protocol for large momentum mismatches. Wider control

beams allow efficient storage and retrieval at even greater

angles; in general, an arbitrarily large positive phase mis-

match can be accommodated provided sufficient energy is

available to maintain the control intensity required to effect

the memory interaction.

In Fig. 5, we combine Figs. 3 and 4, and plot the memory

efficiency versus the optimal phase-matching angle. The

above simulations demonstrate that the efficiency of en-

semble memories can be dramatically improved with the use

of noncollinear geometries, and indeed the observed efficien-

cies, obtained using the formula �1�, are close to the best

efficiencies achievable with no phase mismatch in a collinear

geometry, which represent the dynamical extrema. Nonethe-

less, an exhaustive search of all possible geometries for stor-

age followed by retrieval is beyond the scope of this work;

superior configurations may yet be found.

In summary, our simulations showed that the control

should be loosely focused, with a beam waist more than

twice that of the signal. In addition, we found that in general

positive phase mismatches, where the initial state �1� lies

energetically above the storage state �3�, are preferable.

V. ANGULAR MULTIPLEXING

Having demonstrated the advantages of correct phase

matching over collinear operation, namely the combination

of high efficiency with spectral and spatial distinguishability

of signal and control, we move on to examine the possibili-

ties for multimode storage in ensembles.

Multimode quantum memories can be used to improve the

performance of quantum repeaters �34–37�, and the ability to

store multiple spatial modes in an ensemble allows for novel

quantum computing architectures �38�. In the following, we

consider using the strong directional selectivity imposed by

phase-matching constraints to isolate different spatial modes

within the ensemble, such that each mode may be addressed

independently of the others. We do not explicitly model mul-

timode storage, since a correct account of coupling between

modes requires that we abandon the slowly varying envelope

approximation, making the numerics prohibitively time-

consuming. But we make an estimate of the multimode ca-

pacity of an ensemble memory based on the eikonal approxi-

mation that sufficiently different spatial frequencies are

dynamically decoupled.

Suppose we want to store a pair of signal pulses in the

same ensemble. We can use different angles �1 ,�2 between

the control and signal fields for storage, so that the resulting

spin wave momenta �1 ,�2 point in different directions for

the two signals. Given some phase mismatch 	
, the re-

trieval process will be phase matched at correspondingly dif-

ferent angles for the two signals. Provided these angles differ

sufficiently, a retrieval control pulse for the first signal will
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FIG. 5. �Color online� Efficiency versus optimal phase-matching

angle. The solid lines correspond to tight control focusing wc=ws,

the dotted lines to looser focusing, with wc=2ws. Each line has two

“branches”: the upper branch is achieved for positive momentum

mismatch, the lower for negative momentum mismatch. The results

for the EIT protocol are plotted in �a�; those for the Raman protocol

in �b�.
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have a vanishing probability for extracting the second signal,
and vice versa. Therefore, the two signals may be addressed
independently of one another. We can extend this to a larger
number of signal modes, each stored with a different angle,
and so obtain a multimode memory.

To demonstrate the selectivity afforded by phase match-

ing, we simulated an EIT memory where the storage geom-

etry is determined by our scheme Eq. �1�, but where at re-

trieval the control field angle deviates from the optimal one

by �d. The variation of the memory efficiency with �d is

plotted in Fig. 6�a� for the cases 	
=0 and 1. In the former

case, the spin wave momentum � vanishes, and all retrieval

angles are phase matched, so the memory efficiency is only

limited by walk-off. We used a wide control with wc=9ws so

the efficiency remains high over a large range of angles. For

the case 	
=1, the spin wave momentum becomes impor-

tant, and the efficiency falls quickly as the deviation �d is

increased. Due to the linearity of the memory, this example

suffices to show that tuning the angle of the retrieval control

field can “switch off” the read-out of one mode, and equally

well “switch on” the read-out of another mode. For this ex-

ample, we should choose ��2−�1�=�d�0.02. Near identical

results are reproduced if a Raman protocol is used—in this

case, the spin wave momentum vanishes when 	
=−kdL.

In accordance with the results of Sec. IV, the storage ef-

ficiency for a given phase-matching angle is maximized for a

particular wave vector ks, which is to say a particular signal

frequency �s. Signal modes with larger angles may be stored

more efficiently by adjusting their center frequencies appro-

priately. Using the formula �1�, we have �s=�c cos���+ckd

�for the case �s��c, which is preferable for phase match-

ing�. This type of optimization for multimode storage is eas-

ily accommodated in the Raman configuration, where the

memory efficiency changes slowly with detuning; for EIT

storage, such fine-tuning of the mode frequencies is incom-

patible with the requirement of exact resonance with the state

�2�.
In order to resolve signal fields propagating at different

angles, each signal mode should have an angular divergence

smaller than the angular separation 	� of the modes �see Fig.

6�b��. The angular divergence is limited by diffraction,

whence we obtain the condition 	�
�s /ws, where �s

=2� /ks is the signal field wavelength. The angular separa-

tion should also be sufficient to ensure that there is no

“cross-talk” between neighboring modes. This requirement

amounts to the condition wsks	�
2� on the transverse op-

tical phase, which again implies 	�
�s /ws. We therefore

find that the multimode capacity of a Raman memory is

bounded by the number of diffraction-limited signal modes

that can be efficiently stored. For the example in Fig. 6�a�,
we have 	�
0.01, which is a reasonable estimate of the

angle beyond which efficient retrieval fails when 	
�0.

A simple estimate of the multimode capacity for a quan-

tum memory multiplexed in this way is found by taking the

ratio N=�� /	�, where ��
wc /L is the largest angle � for

which efficient storage is possible, as limited by walk-off.

We then find that N
wcws /�sL
F, with F=�FcFs the

geometric mean of the Fresnel numbers of the regions illu-

minated by the control and signal fields. The Fresnel number

is known to characterize the number of optical modes sup-

ported within a thin pencil-like volume �39�. For the example

in Fig. 6�a�, we calculate N
3. The preceding discussion

suggests that both signal and control beams should be

loosely focused to achieve a large multimode capacity, with

Rayleigh ranges much longer than the ensemble length. Our

numerical results show that we should have wc�2ws for

efficient storage, however, so that the signal modes should

always be more tightly focused than the control.

The feasibility of such a multimode memory depends on

the ability to produce control pulses of sufficient energy that

the coupling remains high even when the control is loosely

focused. As a concrete example, consider an ensemble con-

sisting of 
2 cm of atomic cesium vapor at 50 °C, with an

optical depth 
103 on resonance with the D2 line at 852 nm.

Raman storage is robust to the deleterious effects of Doppler

and pressure broadening in this kind of medium, by dint of

its large detuning from the optical resonance. The control

field is taken from a train of 10 nJ pulses output from a

Ti:sapphire oscillator, corresponding to an average power of


1 W with a typical repetition rate of 80 MHz. If the control

is focused down to a spot of diameter 
7 mm over the en-

semble length, with ws=wc /3, we calculate a multimode ca-

pacity of 
100 signal modes, with an average efficiency

�90% �corresponding to C�2, see Appendix A�. A more

conservative estimate might revise this number downwards

by a factor of 10, but this still represents a considerable leap

in parallelism over single mode storage.

VI. SUMMARY

In conclusion, we have highlighted a phase-matching

problem relevant to all ensemble-based memories that has

received little attention in the literature �but see �25��. We

have presented a simple solution based on noncollinear stor-

age and retrieval, and examined its applicability numerically.

We found good agreement with analytic predictions, and a

marked improvement in efficiency over the un-phase-

matched case. In addition, we considered the feasibility of

multimode storage by angular multiplexing, and found that a

large number of modes may be stored with reasonable pa-

rameters. As experimental techniques for dealing with en-

semble memories mature, we expect these results to be of
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FIG. 6. �Color online� �a� Memory efficiency versus deviation

angle �d for an EIT protocol with a wide control beam wc=9ws. The

dotted line corresponds to zero phase mismatch, the solid line to

	
=1. �b� Angular multiplexing. Different signal fields may be

stored with different angles �. Provided the difference 	� in angle

between adjacent modes is large enough, the modes are “holo-

graphically isolated” and may be addressed, and resolved, indepen-

dently. The largest angle �� for which the memory protocol is

acceptably efficient sets a limit to the multimode capacity of such a

multiplexed memory.
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use in optimizing the performance and capacity of this tech-

nology.
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APPENDIX A: OPTIMIZATION

It has been shown previously how to optimize the storage

efficiency of an ensemble memory in both the Raman and

EIT limits �24,25,40�. Here we use an approach that unifies

these results. A detailed exposition of the method is reserved

for a future work. For now, we simply introduce the principle

behind the optimization, and the result. Our aim is to find the

optimal temporal profile for an incident signal field, such that

it is stored, and then retrieved, with the highest possible

probability by given control fields. In practice, it is desirable

to solve the reverse problem—to find the optimal temporal

profile for the control fields, such that a given signal field is

optimally stored and retrieved. This is done in the works

mentioned above, but it is a slightly harder problem to solve,

and solution of the former problem is sufficient for the pur-

poses of our simulations: it is no more difficult to shape the

signal than it is the control. To obtain a closed-form expres-

sion for the optimal signal profile, we consider propagation

in one dimension with �=0. The memory interaction is linear

�as it should be for a quantum memory capable of storing

coherent superpositions�. Therefore, we may express the

temporal profile Aout of the retrieved signal field as a function

of time � in terms of the linear mapping,

Aout��� = �
−�

�

K��,���Ain����d��, �A1�

where Ain is the temporal profile of the incident signal field,

and the integral kernel K is the Green’s function for the

combined processes of storage and retrieval. In general, K

can always be constructed by numerical solution of the equa-

tions of motion. In fact, the present discussion applies

equally well to a three-dimensional treatment, with trans-

verse coordinates added appropriately, but the numerical

construction of a full 3D Green’s function remains computa-

tionally impractical at present. The efficiency of the memory

is given by the modulus square of Aout, integrated over all

time. The optimization problem, therefore, is reduced to

finding the input Ain that maximizes the norm of Aout. The

problem is solved by considering the singular value decom-

position �41� of the kernel K,

K��,��� = 

j

� j���� j� j
*���� . �A2�

This decomposition exists for any complex bivariate func-

tion, provided it is not too pathological, and extremely effi-

cient algorithms exist for finding it. The optimal efficiency is

achieved by choosing Ain to be the “right singular function”

�1��� that is associated with the largest singular value �1 of

K. Making use of the adiabatic approximation �24,25�, we

can obtain an explicit expression for the optimal signal input

mode. We introduce the complex detuning �=�+i�
=i���e−i�. We then define the dimensionless coupling C

=�d�W / ���, and the dimensionless balance R=�W /d�,

where W=���→�� is the long-time limit of the integrated

Rabi frequency ����=�−�
� �������2��, with ���� the time-

dependent Rabi frequency of the control field. The optimal

input mode is then given by

�1��� = ei�����/���2�����1�C�1 − ����/W�� , �A3�

where �1 is the right singular function associated with the

largest singular value of the integral kernel,

K̃�y,y�� = �
0

C

k�y,x�k�x,y��e2i�	
+kdL�x/Cdx , �A4�

with

k�x,y� = e−sin����x/R+Ry�J0�2ei��xy� , �A5�

where x and y are dimensionless coordinates running from 0

up to C, and where J0 denotes a zeroth-order Bessel function

of the first kind. The complex exponential in Eq. �A4� ac-

counts for the momentum mismatch between the stored spin

wave and the spin wave mode that correctly phase matches

the retrieval process. The kernel K̃ is related to the Green’s

function K by a unitary transformation, and therefore the

singular values � j of K are the same as the singular values of

K̃.

The formula �A3� is valid under adiabatic conditions for

arbitrary detunings, so that it can be used in both EIT and

Raman protocols. Adiabaticity requires that the bandwidth 	
and the peak Rabi frequency � of the control field are not

too large, so that “ringing” effects, such as oscillations be-

tween the states �2� and �3�, are eliminated. For a Raman

memory, the detuning guarantees adiabaticity, provided that

we have �� ,	���. For EIT, the condition becomes �� ,	�
�d�. It can be shown that both of these conditions are ful-

filled, in general, if we ensure that d��	 �25�, which con-

dition is satisfied throughout this paper. Equation �A3� re-

duces to the results in �24� in the off-resonant limit ��1,

with �C�R�1 /�C. The results in �25� are reproduced in

the limit of large control pulse energy, R�1, with R

�1 /�C. The phase factor in Eq. �A3� accounts for the dy-

namic Stark shift induced by the control field; it vanishes on

resonance, but it can be important for Raman storage. The

dotted lines in Fig. 4 are generated by calculating the effi-

ciency �coll=�1
2 for each value of the phase mismatch 	
.

They represent the best efficiency achievable by a collinear

protocol with backward retrieval.

The temporal profile of the signal pulses used for phase-

matched backward retrieval in the simulations is set by using

Eq. �A3� with the phase factor in Eq. �A4� omitted; the

phase-matching scheme of Eq. �1� eliminates the momentum
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mismatch so this choice of input profile is close to optimal,

notwithstanding diffraction and walk-off effects, which are

neglected in the above treatment.

In the case of collinear storage followed by forward re-

trieval, the predicted optimal pulse shape is given by Eq.

�A3�, except that the second kernel in the integrand of Eq.

�A4�, k�x ,y��, is replaced by k�C−x ,y��, and the exponential

phase factor is omitted. As mentioned in the main text, these

“forward” pulse shapes are of limited value for the Raman

protocol operated with a tightly focused control, due to dif-

fraction effects unaccounted for in this one-dimensional

model.

APPENDIX B: NUMERICAL MODEL

To proceed with a numerical analysis of the quantum

memory interaction, we consider the propagation of signal

and control fields in the �x ,z� plane in the presence of a

�-type atomic medium �33,42�. Quantum fluctuations

�43,44� do not influence the efficiency of the memory, so the

dynamics are adequately described by classical equations of

motion. The z axis is defined by the direction of propagation

of the signal field. We transform to a frame moving with the

signal pulse and define the local time �= t−z /v, where t is

the time in the laboratory frame and v is the signal pulse

velocity. The linearized Maxwell-Bloch equations describing

the quantum memory interaction are then given, in the

slowly varying envelope approximation, by �24,25,43�

� �2

2ik̄s

�x
2 + �z�A = i�d�P ,

��P = − �P + i�d�A + i�B ,

��B = i�*P . �B1�

Here A and B are the slowly varying amplitudes of the signal

field and spin wave, respectively. The slowly varying Rabi

frequency � represents the control field envelope and P de-

notes the slowly varying amplitude of the atomic polariza-

tion on the �1�↔ �2� transition. The various constants are

defined as follows. d is the resonant optical depth of the

ensemble along the z axis, 2� is the homogeneous linewidth

of the �1�↔ �2� transition, �=�+i� is the complex detuning,

�=L /ws is the aspect ratio of the ensemble, with L its length

along the z axis, and ws is the beam waist of the signal field.

k̄s= �ks�L is the dimensionless magnitude of the signal field

wave vector, and the signal pulse velocity v=cTc /L is the

dimensionless speed of light, with Tc a time scale set by the

duration of the control field. The frequencies �, �, and � are

all rendered dimensionless by expressing them in units of

1 /Tc. In accordance with the above normalizations, the co-

ordinates are scaled so that the longitudinal position z, the

transverse position x, and the local time � are expressed in

units of L, ws, and Tc, respectively. In these units, z runs from

−
1

2
to

1

2
; x and � both from around −3 to 3—a limit chosen to

be sufficiently large to capture all significant dynamics,

while small enough to obtain results in practicable time.

The coupled system �B1� is solved by finite differences

using the method of lines �45�. We employ spectral colloca-

tion to approximate the spatial derivatives �x and

�z—replacing them with Chebyshev differentiation matrices

�46�. The time evolution is then generated using a second-

order partially implicit Runge-Kutta formula. We discretize

the �x ,z� plane on a 21�21 grid, which affords accuracy to

machine precision. We use around 500 time steps, which

guarantees convergence and provides accuracy to around

10−3. We verified that near identical results are achieved with

a 9�9 spatial grid, and 100 time steps. We use a Gaussian

tranverse spatial profile for the signal field to be stored; the

temporal profile is determined using the one-dimensional op-

timization described previously in Appendix A. The signal

field at the input face of the ensemble is given by

A�z = −
1

2
,x,�� = exp�− � x

Ws�−
1

2
��

2

+
ik̄sx

2

2Rs�−
1

2
��

� �1��� , �B2�

where Ws�z�=�1+ �z /zs�2 is the signal beam size, Rs�z�
=�2z�1+ �zs /z�2� is the signal phase curvature, and zs

= k̄s / �2�2� is the signal Rayleigh range. Note that the ampli-

tude of A is arbitrary, since the system �B1� is manifestly

linear. We use Gaussian temporal and spatial profiles for the

storage and retrieval control pulses. The control pulse is

launched with amplitude �0 at an angle � to the z axis,

��z,x,�� = �0 �
wc

Wc�z��
exp�− � x�

Wc�z��
�2

+
ik̄cx�

2

2Rc�z��
�

� exp�− �� − �0 + �z − z��/v�2� , �B3�

where x� and z� are transformed coordinates given by

x� = cos���x + � sin���z ,

z� = cos���z −
sin���

�
x , �B4�

where the factors of � appear to account for the different

normalizations of the longitudinal and transverse coordi-

nates. Here k̄c= �kc�L is the dimensionless magnitude of the

control field wave vector, Wc�z�=wc
�1+ �z /zc�2 is the control

beam size, Rc�z�=�2z�1+ �zc /z�2� is the control phase curva-

ture, and zc= k̄cwc
2
/ �2�2� is the control Rayleigh range, with

wc the control beam waist, expressed in units of ws. �0 sets

the control pulse timing, in units of Tc; we adjust �0 so that

the signal field, whose temporal profile is determined from

the control via Eq. �A3�, is centered in the temporal domain

of our simulations. In the simulations presented in the main

text, the control amplitude was set to �0=5. We used L

=2 cm and Tc=300 ps for Raman storage, and Tc=3 ns for

EIT, with 1 /�=3 ns in both cases.

The storage efficiency is calculated as the ratio of stored

to incident energy,
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�store =

�
−�

� �
−1/2

1/2

�B�x,z,� → ���2dzdx

�
−�

� �
−�

� �A�x,z = −
1

2
,���2

d�dx

. �B5�

Having simulated the storage process, we transform our co-

ordinate system so that the z axis for the retrieval process

coincides with the direction in which the signal field genera-

tion is phase matched. The spin wave at the start of the

retrieval process is related to the spin wave at the end of the

storage process by the transformation

�B�z,x,� → − ���retrieval = �B�z�,x�,� → ���storage, �B6�

where z�, x� are as defined in Eq. �B4�, except that the angle

� is replaced by

�� = − 2 sin−1� k̄c sin���

�k̄s
2 + k̄c

2 − 2k̄ck̄s cos���
� . �B7�

As can be seen from Fig. 2�a�, the retrieval control field is
launched at an angle −� to the z axis for the retrieval process.
The retrieval efficiency is calculated as the ratio of retrieved
to stored energy,

�retrieve =

�
−�

� �
−�

� �A�x,z =
1

2
,���2

d�dx

�
−�

� �
−1/2

1/2

�B�x,z,� → − ���2dzdx

. �B8�

Finally the total efficiency �total for storage followed by re-
trieval �neglecting, as we have, any decoherence of the spin
wave� is just given by the product of the separate efficien-

cies, �total=�store�retrieve.
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