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ABSTRACT  
There is a need for accuracy evaluation tools for 3D image-based modeling and to identify the key 
factors and critical configurations affecting this accuracy. We propose a novel technique that 
creates simulated data based on the actual project data. The technique gives a valid and realistic 
measure of the accuracy, and has been applied on a wide variety of data to study the effect of 
various parameters and configurations. As a result, guidelines for some phases of 3D modeling 
from images are given. We focus on modeling relatively large structures like monuments and 
architectures for accurate documentation where knowledge of uncertainty is important. 
 

1. INTRODUCTION  

1.1 The Objectives 

Yet there is no practical comprehensive study of all the issues involved in designing a 3D modeling 
project using digital images. Neither the optimal network design developed for photogrammetric 
industrial measurement nor the closely spaced image sequence needed for fully automated 
modeling techniques is easily applicable in a typical practical situation. Thus, existing studies, 
although they are the basis of this work, are not sufficient. Our study has two goals:  
1. Understand the critical factors that affect the performance by: 

• Experimentally verifying the already theoretically proven effects of known parameters. 
• Studying in depth the effect of parameters that have received less attention in the literature. 
• Discovering the effects of parameters and configurations that are still not obvious. 

2. Develop tools that accurately predict the performance for given application parameters and 
compute reliable measures for monitoring and verification of the performance. 

 
First we need to define the performance measures then use simulated data, data with ground truth, 
and fully equipped calibration and evaluation laboratory to test the validity of these measures. Once 
we are confident in the performance measures, we then use them on practical data without ground 
truth information to study the effect of possible practical factors. We define the performance as not 
only the estimated accuracy but also the sensitivity of the configuration to errors in the input data. 
 

1.2 Previous Work 

In photogrammetry the goal of the studies is to achieve the optimum accuracy (best accuracy at 
minimum cost). The focus is on 3D measurements of resolved targets for industrial applications, 
mainly in controlled environments. Accuracy can be 1: 100,000, based on at least 0.02 pixel target 
measurement and optimum configuration. Since in practical modeling projects we have no such 
targets but instead we have natural features with at best 0.5 pixel positioning and less than optimum 
configurations, we can expect orders of magnitude less accuracy. In computer vision the goal is to 
identify critical configurations where a solution fails or is ambiguous. The focus is on specific 
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automated technique, such as stereovision or continuous image streams with short baselines, with 
the assumption of no restriction on the motion and no knowledge of the camera. These two 
extremely different points of views have led to studies that are useful only in limited applications. 
In this paper we focus on large-scale objects and scenes reconstruction for documentation, 
animation, and visualization. In the natural settings of such objects, it is usually impossible to apply 
either the optimum configuration for accuracy or the essential sequence for full automation.   
 
1.2.1   Confirmed factors. Studies in photogrammetry [e.g. Fraser 2001] have established that: 

• Accuracy increases with the increase in base-to-depth (B/D) ratio and using convergent 
images rather than images with parallel optical axes. 

• Increasing the number of measured points per image improves the accuracy but not 
significantly if the geometric configuration is strong and the points being measured are well 
defined (like resolved targets) and well distributed in the image. 

• Accuracy improves significantly as the number of images where a point appears increases. 
However, measuring the point in more than four images gives less significant improvement.  

• Self-calibration is reliable only when geometric configurations are favorable.  
  
1.2.2   Selected studies. Critical analyses of automated techniques were undertaken. Configurations 
that lead to ambiguous projective construction have been identified [Hartley, 2000, Kahl et al, 
2001]. Since projective reconstruction must be followed by metric construction using self-
calibration, certain sequences will cause self-calibration to fail or not give a unique construction 
[Sturm 2002, Kahl et al, 2000]. The effect of calibration errors on 3D reconstruction has received 
some attention. Abraham and Forstner, 1998 performed theoretical analysis using stereo 
configuration. Errors in the principal distance modify directly the reconstruction while the effect of 
errors in the principal point coordinates are very small on forward motion. Using closely spaced 
images, Zucchelli and Kosecka, 2001, found that calibration errors introduce motion bias towards 
the optical axis. The bias increases by the increase in the field of view and causes a distortion of the 
resulting 3D structure. Bougnoux, 1998 pursued the stratified approach to Euclidean reconstruction 
and experimentally demonstrated that, although errors in calibration cause depth distortions, the 
basic geometric relationships (orthogonality, parallelism) were preserved. Hartley and Kaucic, 
2002, showed that large errors in principal point position produce incorrect focal length from self-
calibration thus creating visible reconstruction errors. Kunii and Chikatsu, 2002, used check points 
to find that accuracy of stereo systems improves as the resolution of the camera increases up to 3 
mega pixels. Higher resolutions did not improve the accuracy. However, the analysis was based on 
rather large circular targets. We suspect that on natural features such as corners the pointing 
accuracy will always improve as the resolution increases. Grossmann and Santos-Victor, 2000, 
studied the accuracy of reconstruction using self-calibration and compared it with the case of using 
already calibrated camera. Using short base-line images, i.e. not a strong geometric configuration, 
they found that the case of already calibrated cameras is always more accurate, particularly on a 
short sequence of less than 10 images. The effect of input noise on the output parameters and 
coordinates was studied using theoretical analysis of error propagation [e.g. Yi et al, 1994]. The 
studies showed significant effect in standard stereo-vision configurations, particularly when using 
less optimum linear techniques. Triggs et al, 2000, confirmed that photogrammetric bundle 
adjustment gives the optimum solution for a given input data error. Foerstner, 1994, discussed using 
covariance matrices as self-diagnostic tools for evaluating the results and accuracy prediction.  
 

1.3 Overview and Scope of the Paper 

1.3.1   Performance/Accuracy measures. A measurement must be expressed in terms of an 
absolute number ± uncertainty, which is an indication of the accuracy. In the absence of ground-
truth data, the standard measure for accuracy or uncertainty is the covariance matrix of the 3D 
coordinates, factored for a confidence level, at a given reference system. Although the results can 
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significantly vary with different reference systems, these variations do not produce different 
structures or shapes [Morris et al, 1999]. Fraser, 1987 showed that computing the covariance matrix 
needs only the inverse of the 3x3 normal equations matrix of the object coordinates, thus neglecting 
correlation between points and the effect of the projective parameters errors. The covariance matrix 
of all unknowns gives complete evaluation of all parameters like camera position and orientations 
and correlations between parameters. Bias introduced by systematic errors (e.g. incorrect 
calibration) will not correctly be reflected in covariance matrices since they are assuming only 
random errors. Therefore, the effect of systematic errors should be added to the standard deviations.  
 
1.3.2   Parameters and configurations. We need to study the effect of parameters and 
configurations on the accuracy of the 3D reconstruction and identify those that may lead to either 
singularity (no solution) or instability (a small error in the input data causes large errors in the 
output). The major parameters are camera internal geometry parameters such as resolution and lens 
parameters, calibration errors, camera and point configurations, number of images per point and 
points per image, the choice of datum or the 3D coordinate frame and its uncertainty, and 
assumptions, if any, made about the surfaces in the scene. 
 
1.3.3   Analysis techniques. Many existing publications concentrate only on the theoretical analysis 
and have no or limited real experimental results. Theoretical analysis alone is not sufficient since it 
is usually based on some simplifying assumptions and may not take into considerations all factors 
present in practice. On the other hand, experimental analysis alone is not sufficient either because it 
is done on the available data whereas significantly different data may lead to different behavior. 
One may also analyse the effect of input error on output data under different conditions using real 
data. However, the most flexible and cost effective way to measure the effect of each parameter, 
combination of parameters, and any configuration is to use simulations. In this case, care must be 
exercised to ensure that the simulation represents reality. Some controlled tests are also needed to 
assess specific parameters and configurations and have some ground-truth-based evaluation. 
 
1.3.4   Scope. Although the paper does not deal with projective reconstruction and we assume 
correct correspondence, the analysis is still applicable to the metric reconstruction that must follow 
the projective one. We use optimal photogrammetric bundle adjustment so our analysis is not 
biased by any algorithmic simplification or assumptions made. Due to the limited space, not all the 
actual results could be presented here, however most of the findings are discussed. Based on the 
analysis, guidelines for achieving geometrically correct 3D models will be given. 
 

2. PRIMARY ANALYSIS 

2.1 Design of the Measurement Process 

Creation of 3D models, although has been a very active topic over the past decade, remains an 
experimental process. In particular, designing a procedure to achieve the required accuracy for a 
given application is still ad hoc. In any accepted standardized measurement application the design 
procedure follows figures 1. Without identifying the sources and the size of the error given the 
application parameters, we have no way of designing a project to satisfy its requirements. This 
procedure has been in use in close-range photogrammetric industrial applications using simulations 
[Fraser 1987]. Our analysis is also based on simulated data supported by real data, and ground truth 
observations, from a large number of diverse projects. 
 

2.2 Identifying Error Sources 

Figure 2 gives an overview of the possible sources of error. 
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1. Pointing accuracy is affected by image quality such as resolution, 

lens aberrations, sharpness, and human errors if pointing manually. 
2. The validity of the model parameters describing the internal 

geometry of the camera  (camera calibration errors).  
3. External geometry or configuration parameters such as camera 

positions and orientations relative to the object and to each other. 
4. Redundancy or the number of points per image and the number of 

images where a point appears.  
5. Datum (reference coordinate system) establishes scale, origin, and 

orientation. Change in datum should not change the shape of the 
object, however it will change the resulting coordinates and thus 
the covariance matrix and its homogeneity. 

6. Assumptions, if any, made about the shape of the object. 

Figure 1: Design process 
 

 
Figure 2: Main sources of error in the 3D reconstruction from images 

 

3. ANALYSIS WITH REAL AND SIMULATED DATA 

The most effective way to do the analysis is to use simulation supported by real data. This allows us 
to separate the effect of various factors and have more control and flexibility on the configurations. 
 

3.1 Ground Truth Simulation Tool 

We developed a novel tool to simulate test data with ground truth from the actual project data. The 
idea can be summarized as follows: 
1. Take images of the object of interest in the practically possible locations. Apply bundle 

adjustment with the real data to find camera parameters and some object coordinates. 
2. Replace the real object with a simulated object based on the 3D measurements and reference 

system from step 1. The simulated object can be a simplified version of the actual object. 
3. Project the 3D coordinates of the ideal object into the images using the computed camera 

parameters from step 1. Since the simulated shapes are simple, the software tool determines the 
visible surfaces automatically. Previously measured real object image coordinates are removed. 

4. Add noise to the projected image coordinates, the value of which depends on image resolution 
and quality of features (usually 0.25 to 1.0 pixel on natural features). 

5. We now have a set of simulated data that has the same configuration as the actual data. We then 
perform accuracy and sensitivity evaluation based on ground truth. If the tests prove that the 
model will not meet accuracy requirements or is unreliable, the configuration can be changed in 
the simulation to achieve the desired accuracy and re-acquire the actual images accordingly. 

 
We will start with a simple monument, the Paris City sculpture, Place de Paris, in Quebec City 
(figure 3). Images were taken all around at various base-line distances. Bundle adjustment was done 
using points at the corners of the lines on the object surfaces. From this, a simulated object (figure 
4) has been created. A total of 84 points at the intersections of grid lines were created with ideal xyz 
coordinates. Random errors of one-pixel standard deviation were added.  
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 (A)  (B) 
Figure 3: (A) Test monument, (B) Systematic error in point position. 

 

 
Three of the simulated images  

Camera locations 
Figure 4: Some simulated images and camera locations around simulated object. 

 
Table 1: Comparison between accuracy estimates for different configurations. 

Computed averages of variances Ground-truth differences (RMS)  
Case 

Number of images 
[B/D ratio] σx σy σz dx dy dz 

A 2 [0.04] 24.8 8.0 24.9 65.7 11.2 87.1 
B 3 [0.03-0.04] 18.8 4.1 20.1 26.6   5.2 27.2 
C 3 [0.80-1.00]   2.4 1.6   5.2   4.2   4.1   9.0 
D 4 [0.04-0.80] 10.1 2.9 13.9 13.2   5.1 19.2 
E 5 [0.04-0.80]   8.8 2.7 12.7 12.6   3.8 17.7 
F 6 [0.40-1.30]   2.2 1.8   3.3   4.1   3.5   8.1 
G 8 [0.01-1.30]   1.8 1.4   2.6   3.6   3.1   7.2 

 
3.2 Validation of Accuracy Estimator 

We will consider the estimator σ, from the covariance matrix, valid if the actual error is within 3 σ. 
The estimator was valid except for some cases. When the added noise is not random, the estimator 
becomes too optimistic. We intentionally perturbed the image coordinates by small amount, the one 
shown in figure 3-B. This resulted in up to 7 σ errors.  This emphasizes the fact that statistical 
estimators can only deal with the random component. Also the estimator was unreliable when the 
redundancy was low, such as using points in only two closely spaced images [table 1 (A)]. The 
homogeneity of the standard deviations is also desired else we need an estimator for each point. 
 

3.3 Effect of Image Configurations 

We will now closely examine the effect of camera configurations, particularly the use of closely 
spaced images versus widely spaced images. In a sequence of closely spaced images, if the points 
are tracked only in 2 images (figure 5), the resulting reconstruction was poor. The effect was almost 
proportional to B/D2 when B/D was less than 0.3. Using combination of images, some with poor 
and some with good geometry, and tracking the points over all images, the reconstruction was 
acceptable. In the case of 4 images [table 1 (D)], the points that appeared in 3 weak images only 
had an order of magnitude larger standard deviation than the points appearing in all 4 images. This 
situation will happen in practice due to accessibility limitations. In the scene is figure 6 due to trees 
and close-by buildings it was difficult to find suitable camera positions. Only 3 images at small B/D 
(0.13) were possible. Standard deviations in X, Y, and Z were: 4.0 mm, 6.6 mm, and 24.2 mm, thus 
the small B/D ratio gave significant error in Z. An error of the size shown in figure 6C in one image 
gave an error of 9 mm (X), 13.8 mm (Y), and 60.1 mm (Z) when using all three images. When 
using only two images the error in Z increased to 193 mm (compared to 60.1 mm for 3 images).  
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(A) 

 
(B) 

 
(C) 

Figure5: Error in a point in 2 images Figure 6: (A) Test scene, (B) Model & camera 
locations, (C) Systematic error in point position. 

 
3.4 Effect of Redundancy 

Using the test data in figure 3, we studied the effect of the number of points per image and the 
number of images where a point appears. The poor B/D ratio contributed to large uncertainty when 
the redundancy was low (2-3 images), but then reached the same accuracy at 6 images as when the 
B/D ratio was high. This proves that tracking points over at least 6 images gives significant 
improvement in accuracy, particularly for weak geometric configurations.   
 
 
 

 
A: B/D ratio (0.57-0.92) –30 points 
per image. 

B: B/D ratio (0.57-0.92)- 60 points per 
image. 

 
 

 
C: B/D ratio: 0.17-0.46 – 30 points 
per image. 

Figure 7: Effect of redundancy at different image configurations. 
 

3.5 Effect of calibration errors  

3.5.1   Errors in focal length. The test sculpture shown in figure 8 was 
imaged from all sides with each image taken with different focal length. 
The focal lengths varied from 14 mm to 26 mm. First, we performed a 
bundle adjustment assuming one focal length for all images (15 mm). 
This resulted in an average standard deviation of 5.7 mm (X), 3.7 mm 
(Y), and 6.9 mm (Z). When using the correct focal length per image, the 
standard deviations were 1.9 mm, 1.3 mm, and 2.4 mm respectively, an 
improvement by a factor of 3. However, the systematic effect on the 
shapes was much larger than what the standard deviation indicated. For 
example, a rectangular shape on the object measured 1002.8-mm x 
600.2-mm x 1004.4-mm x 600.4-mm using the correct focal lengths. 
The same rectangle measured 1007.8-mm x 592.1-mm x 1032.9-mm x 
584.3-mm using the wrong constant focal length (30 mm difference).    

 
 

 
 

Figure 8: Test Sculpture 
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3.5.2   Errors in principal point. Fixing the principal point (P.P.) at image center is common when 
performing self-calibration in computer vision. From laboratory calibration of many digital cameras 
we found that the calibrated principal point coordinates were shifted from the center by an average 
of 35 pixels. We calibrated with fixed P.P. at the center and also calibrated by solving for the 
correct location. Comparing results, we found no effect on either the standard deviations or 
reconstruction (e.g planes, cylinders and angels between planes remain correct). Studies that 
showed significant effect (Hartley and Kaucic, 2002) varied the principal point by half the size of 
the image, which does not happen in practice unless the image is cropped. 
 

3.6 Effect of Resolution 

On well-defined large targets the effect of the resolution on the center of the target may not be the 
same as on small targets and natural features like corners. We experimented with targets of various 
sizes and with corners. Our test site includes 31 sets of target groups each has 6 targets of two 
different sizes and corners of rectangles (figure 9). The targets were surveyed to 0.1 mm accuracy 
and used as ground truth. The cameras used had resolutions ranging from 1.5 to 14 mega pixels. 
Figure 10 displays the relationship between resolution and accuracy on the Z coordinate for large 
targets and small targets or corners (results with small targets and corners were combined). On the 
large targets, improvement when increasing the resolution was relatively small. For example it was 
30% from 1.5 to 4 mega pixels, and 20% from 4 to 14 mega pixels. A 60% improvement between 
1.5 and 4 mega pixels and 30% between 4 and 14 mega pixels was found on the small targets and 
the corners, thus the effect of image resolution was more significant. 
 

 (A) 
 

 (B) 

Figure 9: Test Targets (A), Close up (B) Figure 10: Accuracy vs. resolution 
 

4. CONCLUSIONS 

Since internal evaluation using the covariance matrix may give too optimistic results (particularly 
for weak geometry, low redundancy, and presence of systematic errors) a novel tool to simulate 
data with ground truth from the actual project data has been developed. This simulation was very 
useful in uncovering behavior that the covariance matrix alone did not reveal. Using this tool, as 
well as controlled tests, the conclusions of the work presented in this paper can serve as guidelines 
for accurate image-based modeling. Here are the most significant conclusions: 
• In practice, it is difficult to achieve optimum network design. Therefore, the goal should be to 

avoid weak geometric configurations, low redundancy, and incorrect calibration. 
• To avoid low redundancy, points should be tracked over 4 or more images, at least two of which 

have base to depth ratio of 0.4 or larger, and over at least 6 images for closely spaced 
sequences. This is the most effective way to increase accuracy even for poor configurations. 
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• Weak geometric configurations are directly function of the base to depth ratio, and the effect is 
more pronounced when this ratio is small (close to B/D2 when B/D is less than 0.3). 

• Since conditions for accurate self-calibration may not be achievable in practice, separate camera 
calibration at the focal settings used in the actual project is recommended. Most digital cameras, 
at least recent ones, will accurately record the actual settings on each image thus we can 
calibrate at each of those setting. Assuming that the principal point is located at the center of the 
image while doing the calibration has insignificant effect on the reconstruction. 

• On natural features, the accuracy of the input data improves significantly as camera resolution 
increases, while the improvement is less significant on well-defined large resolved targets.   

• In applications such as architectures, assumptions about surface shapes, such as planes and 
cylinders (like the objects in figure 3 and 6), are sometimes integrated in the solution. Although 
not shown here, if these assumptions are not exactly true they will create bias in the results. 

• In practical projects, using natural features and less than optimum configuration, but high 
redundancy and correct pre-calibration, we can expect about 1: 4,000 accuracy.  This should be 
reduced if practical conditions reduce the redundancy or the pointing precision.   
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