i+l

NRC Publications Archive
Archives des publications du CNRC

Small-molecule inhibitors of the pseudaminic acid biosynthetic
pathway : targeting motility as a key bacterial virulence factor
Menard, Robert; Schoenhofen, lan C.; Tao, Limei; Aubry, Annie; Bouchard,
Patrice; Reid, Christopher W.; Lachance, Paul; Twine, Susan M.; Fulton,
Kelly M.; Cui, Qizhi; Hogues, Hervé; Purisima, Enrico O.; Sulea, Traian;
Logan, Susan M.

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut étre I'une des suivantes : la version prépublication de l'auteur, la version
acceptée du manuscrit ou la version de I'éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de I'éditeur, utilisez le lien
DOI ci-dessous.

Publisher’s version / Version de I'éditeur:
https://doi.org/10.1128/AAC.03858-14
Antimicrobial Agents and Chemotherapy, 58, 12, pp. 7430-7440, 2014-09-29

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=5bb3000c-2678-482b-8e38-2de222f03bc7

https://publications-cnrc.canada.ca/fra/voir/objet/?id=5bb3000c-2678-482b-8e38-2de222f03bc7

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

https://nrc-publications.canada.ca/eng/copyright
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’acces a ce site Web et I'utilisation de son contenu sont assujettis aux conditions présentées dans le site

https://publications-cnrc.canada.ca/fra/droits
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at
PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

premiere page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas a les repérer, communiquez avec nous a PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research  Conseil national de C dl*l
Council Canada recherches Canada ana, a



10

11

12

13

14

15

16

17

18

Y
2

Small-molecule inhibitors of the pseudaminic acid biosynthetic

pathway: targeting motility as a key bacterial virulence factor.

Robert Ménard®', lan C. Schoenhofen?, Limei Tao®, Annie Aubry?, Patrice Bouchard®,
Christopher W. Reid**, Paule Lachance’, Susan M. Twine?, Kelly M. Fulton?, Qizhi Cui®, Hervé

3 - . . * *
Hogues?, Enrico O. Purisima®, Traian Sulea®™ and Susan M. Logan®

! Biologics Program, Human Health Therapeutics, National Research Council Canada, 6100

Royalmount Avenue, Montreal, QC H4P 2R2, Canada

2 Vaccine Program, Human Health Therapeutics, National Research Council Canada, 100 Sussex

Drive, Ottawa, ON K1A OR6, Canada

" This work is dedicated to Robert Ménard who passed away on August 19, 2013.

# C.W. Reid: Current address: Department of Science and Technology, Bryant University,

Smithfield, RI, USA

* . .
Corresponding authors: Traian.Sulea@nrc-cnre.ge.ca, Susan.Logan@nre-cnrc.ge.ca

1



19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Abstract

Helicobacter pylori is motile by means of polar flagella and this motility has been shown to play
a critical role in pathogenicity. The major structural flagellin proteins have been shown to be
glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to
microorganisms and the process of flagellin glycosylation is required for H. pylori flagellar
assembly and consequent motility. As such, the Pse biosynthetic pathway offers considerable
potential as an anti-virulence drug target, especially since motility is required for H. pylori
colonization and persistence in the host. This study describes screening the five Pse
biosynthetic enzymes for small molecule inhibitors using both high throughput (HTS) and in
silico (VS) approaches. Using a 100,000 compound library, 1773 hits were identified by HTS that
exhibited a 40% threshold inhibition at 10 uM concentration. In addition, VS efforts using a 1.6
million compound library directed at two pathway enzymes identified 80 hits, 4 of which
exhibited reasonable inhibition at 10 M concentration in vitro. Further secondary screening
was performed which identified 320 unique molecular structures or validated hits. Following
kinetic studies and SAR of selected inhibitors from our refined list of 320 compounds, we
demonstrated that three inhibitors with ICsq values of approximately 14 uM, and which
belonged to a distinct chemical cluster, were able to penetrate the Gram negative cell

membrane and prevent flagella formation.
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Introduction

Infections caused by bacteria continue to represent major challenges to health care in both the
hospital environment as well as the community setting. Microbial resistance to antibiotics has
increased to the point where the current arsenal of antibacterial drugs are inadequate and on
many occasions bacterial resistance to these drugs can lead to life threatening infection (1, 2).
The development of new, effective antimicrobials is clearly needed and targeting bacterial
virulence has gained considerable attention recently as an alternative approach to identify
novel antibacterial therapeutics (3-6). Depriving pathogenic bacteria of their virulence functions
could prevent the establishment of infection, and would allow the host immune system
sufficient time to facilitate clearance of the organism. Virulence targeted drugs are organism-
specific and are unlikely to be bactericidal; features which would have limited impact on host
commensal flora and provide the additional benefit of reducing the risk of opportunistic
infections. New anti-virulence drugs could also be used in combination with existing éntibiotics

to improve efficacy in current treatment strategies.

Helicobacter pylori is a significant gastrointestinal pathogen responsible for chronic
active gastritis, peptic ulcers and related gastric cancers (7). The current established treatments
for H. pylori infection are numerous and include triple or quadruple therapy both of which
utilise two antibiotics (metronidazole, amoxicillin tetracycline or clarithromycin) in addition to
either a proton pump inhibitor (PPI) (triple therapy) or PPl and bismuth (quadruple therapy).
The efficacies of these treatment strategies have been severely hampered in recent years due

to the rise in antibiotic resistance of H. pylori isolates and is now at the point where the current
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rate of eradication has dropped below 70% in many countries (8). As such there is a clear need

to develop alternative therapeutic strategies for the management of H. pylori related disease.

It has been clearly established that motility is a critical virulence factor for H. pylori
infections (9-11). This motility, observed under conditions of elevated viscosity (as is found in
the gastric lumen), is due to a unipolar bundle of sheathed flagella of which the structural
filaments are composed of two flagellin protein species, FlaA and FlaB. To infect the stomach,
the bacteria must first transit the mucus layer from the gastric lumen, with the final destination
being the epithelial surface, which is the site of infection. The directed motility of cells is
essential to this process as H. pylori colonizes the interface of separate mucosa (antral and
fundic) in the stomach, and the organism must continually seek out this niche as conditions
vary between fasting and feeding (12). Importantly, in addition to being required for initial
colonization of the stomach it has also been shown that motility is also required for robust,

long-term, persistent infections (11, 13).

In previous studies we demonstrated that the structural flagellin proteins from H. pylori
and Campylobacter jejuni are glycosylated with the novel “sialic acid-like” nonulosonate sugar,
pseudaminic acid (Pse). Targeted gene disruption of the Pse biosynthetic pathway genes
showed that this glycosylation is essential for flagellar filament assembly and consequent
motility (9, 14). The H. pylori Pse pathway isogenic mutant strains were unable to colonise the
stomach in a mouse model of infection and C. jejuni Pse isogenic mutant strains were
attenuated in the ferret diarrhoeal disease model (9, 15). Pseudaminic acid derivatives are also

found in a number of other bacterial species as components of cell surface glycans such as LPS
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O antigens, capsular polysaccharides and pili, and in many examples these surface glycans are

essential for bacterial virulence (16-19).

As a key virulence factor, as well as being a unique product made by microorganisms,
the Pse biosynthetic pathway offers potential as a novel therapeutic target. The Pse
biosynthetic pathways from H. pylori and C. jejuni have been elucidated and the function of
each of the pathway’s five biosynthetic enzymes has been determined following recombinant
production and purification of each biosynthetic enzyme (20-23). In addition it has been
demonstrated that the all 5 Pse pathway enzymes can be combined in a single one-pot reaction
for the synthesis of Pse using UDP-GIcNAc as an initial substrate (20). Structural studies of three

of the biosynthetic enzymes have also been completed (24-26).

The observation that glycosylation of the flagellin structural proteins is required for
flagellar assembly and subsequent motility, in addition to the extensive body of work
characterizing the novel bacterial pseudaminic acid biosynthetic pathway, has set the ground
work for small-molecule inhibitor screening of this key H. pylori/C. jejuni virulence factor. In this
study we have identified small-molecule hits from high-throughput screening (HTS) and virtual
screening (VS) campaigns. We disclose a subset of chemically-related small-molecule lead
compounds that inhibit H. pylori and C. jejuni Pse biosynthetic pathway enzymes and prevent

flagella formation in cell-based assays with C. jejuni.

Materials and methods

HTS library
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The screened HTS library consists of 96,116 pure chemical compounds acquired from the
commercial HTS libraries of ChemDiv Inc. (San Diego, CA) and Tripos Inc. (St. Louis, CA), which

were selected based on their chemical diversity and drug-like properties.

Pse-pathway enzymes

Recombinant production and purification of H. pylori and C. jejuni Pse biosynthetic enzymes
were as previously described (20, 22) and recombinant plasmids are listed in Table S5. Purified

proteins were dialyzed against 20 mM HEPES pH 7.2, 50 mM NacCl prior to assays.

Phosphate based primary screening assay

For HTS in 384-well plates, the reaction volume was 10 pL per well. A substrate master mix of
7.26 pL (containing 0.5 mM UDP-GIcNAc, 0.5 mM PLP, 7 mM L-Glu, 0.5 mM acetyl-Co A and 0.5
mM PEP) was combined with 2.74 plL of enzyme mix at concentrations indicated in Table S1.
Each well contained 10-20 uM of library compound and reaction was incubated for 60 min at
37°C, 95% RH. Pi detection was done by adding 40 ALS reagent (Pi Colorlok assay kit from
Innova Biosciences), incubated 5 min, then reaction stopped by addition of 4 pL of stabilizer.

Final ODsgs reading was done on PerkinElmer Envision plate reader.

RapidFire HTMS secondary screening

Reactions were carried out in 384-well plates with final reaction volume of 10 pL per well. The
reaction conditions for each assay are provided as supplemental data (Table $3). Reactions
were stopped by adding 30 pL of stop solution (20 : 80 : 0.2 = acetonitrile : water : formic acid),

then 25 pl of stopped reaction mixture was transferred from 384-well assay plates into 4 X 96-
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well plates containing 175 plL of stop solution. HTMS plates were sealed, centrifuged and kept
at 4°C until processed by the RapidFire 200 (Agilent) coupled to Agilent QQQ6410B mass
spectrometer. Sample (10 pL) was delivered directly from 96-well plates to the Graphitic
Carbon cartridge to replace the non-volatile buffer with H,0 in a 2.5-s wash cycle at a flow rate
of 1.5 mL/min. The substrate and product were co-eluted to the mass spectrometerin 4to 8 s
using 70 : 30 : 0.02 = acetonitrile: water: ammonium hydroxide at a flow rate of 0.9 mL/min.
The chromatograph system produced baseline-resolved peaks. The eluted sample passed
directly into the MS ion source under negative ion mode for quantitative analysis. The other
parameters for each analyte are given as supplemental data (Table $2). The concentration of

each inhibitor in HTMS screening reactions was 30 M.
Chemical clustering

Chemical clustering of compounds was carried out in Sybyl 8.1.1 (Tripos Inc., St. Louis, MO) by
hierarchical clustering. 2D-FINGERPRINTS, which are binary variables for the presence (1) or
absence (0) of specific fragments, and ATOM_PAIR_FP, which are fingerprints describing the
minimum path lengths between atoms in molecules, were used as clustering descriptors of
molecular structure at 2D level. Hierarchical clustering was complete (Fig. $2), tha;c is, taking the
inter-cluster distance to be the greatest separation between their elements, thus producing

dendrograms with multiple, compact root clusters and minimizing the generation of singletons.
PseB kinetic assay

Reactions were carried out in 384-well plate in 20 mM HEPES, 20 mM NaCl pH 7.2, 1% DMSO,
with final reaction volume of 50 pL per well. PseB at a concentration of 2uM was preincubated

7
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with library compounds at 100, 66.7, 44.4, 29.6, 19.8, 13.2, 8.8, 5.9, 3.9, 2.6, 1.7 or 1.2 uM for
10 min at 25°C. The reaction was started by addition of 200 pM UDP-GIcNAc. After incubation
for 30 min incubation, the reactions were stopped by transferring 4 pl of each reaction mixture
into 195 L stop solution (20 : 80 : 0.2 = acetonitrile : water : formic acid) in 96-well plates.

Then samples were analyzed by RapidFire coupled to mass spectrometer.

Cell-based assays

C. jejuni 81-176 and C. jejuni 81-176 PseB::Cm were grown overnight on Mueller Hinton agar
under microaerophilic conditions at 37°C. Cells were harvested from an agar plate into Mueller
Hinton broth and this suspension was used to inoculate a well with 1 mL of Mueller Hinton
broth containing 0.01% DMSO in a Falcon Multiwell™ 6 well plate to ODggo of 0.1. Inhibitors (in
DMSQ) were added to wells to final concentration as specified. The multiwell plates were
incubated with shaking (200 rpm) at 37°C under microaerophilic conditions for 7 h, the ODggg
measured and cells harvested by centrifugation. Cells were fixed overnight in 3% formalin in
PBS, washed in PBS and ODggg adjusted to 0.08 for coating on 96 well plates for ELISA. C. jejuni
strain 81-176 and the 81-176 PseB ::Cm grown in multiwell plates in identical fashion to
inhibitor test samples were used as positive and negative controls for ELISA assay. Assays were

completed on two independent occasions.

ELISA assays

Nunc MaxisorpPlates were coated with 100 ul of formalin-fixed cells overnight at 37°C. Plates
were blocked (1% BSA in PBS) and then washed 3x with PBS/Tween 0.05% (PBS-T). A His-tagged

sdAb specific for 81-176 flagellin (a gift from M. Arbabi, NRC) was then added (1:1000 in PBS-

8
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BSA, 0.85 mg/ml) and plates incubated for 2 h at RT. Plates were washed 3x (PBS-T) and then
incubated with rabbit anti-His HRP conjugated antibody (1:10,000 in PBS-BSA, 1 mg/ml) for 1h
at RT. Following washing, the antibody was detected with TMB for 10 min and reaction stopped

with 1M H3PO,. Samples were analyzed in triplicate and absorbance was measured at 450 nm.

Inhibitor docking and virtual screening

The 1.85-A resolution crystal structure of PseG in complex with UDP (PDB code 3HBN) and the
1.9-A resolution crystal structure of PseB in complex with UDP-GIcNAc (PDB code 2GN4) were
used for virtual screening and inhibitor docking after removal of water, substrate/product
molecules and co-solvent/buffer molecules, and addition of hydrogen atoms according to
standard ionization states. In the case of PseB, the NADP* cofactor and two subunits of the
hexamer were retained from the crystal structure as they are essential for shaping the PseB

substrate-binding cleft.

Virtual screening was carried out on a library of 1.6 million commercially-available drug-
like compounds from the ZINC database (27). We used a high-throughput VS docking-scoring
pipeline (28, 29). The exhaustive docking program Wilma (28) within the VS pipeline was used
with default increment parameters and the WilmaScorel energy function (29). The ligand
conformations were generated by Omega (OpenEye, Inc., Santa Fe, NM) and controlled by
setting the internal energy cutoff to 20 kcal/mol and adjusting the pose clustering parameter to
produce at most 5000 conformations. Wilma-generated poses were refined by constrained
energy minimization as described previously (28, 30) prior to binding affinity scoring with the

solvated interaction energy (SIE) function (31) using default parameters for the electrostatic
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and non-polar contributions to interaction and desolvation energies (30, 32). Pose selection for
a given inhibitor against a given enzyme variant was based on the lowest SIE score. These SIE
scores were then used for binding affinity ranking among various inhibitor-enzyme complexes.
Top-scored 200 complexes in the case of PseG and 357 in the case of PseB were subjected to
SIE averaging on molecular dynamics trajectories using SIETRAJ as described previously (30, 32,

33) to obtain the final binding affinity scores.
Results

Development of an optimized HTS assay for Pse biosynthetic enzymes

The Pse biosynthetic pathway is outlined in Figure 1. Previous work had demonstrated that the
synthesis of Pse could be accomplished by combining all five enzymes of the pathway in a single
reaction with UDP-GIcNAc and necessary cofactors. Since the last enzymatic step results in the
release of inorganic phosphate, the entire pathway can be screened for inhibitors
simultaneously using a phosphate detection based assay. As such we first developed a 384-well
plate assay using the 5 enzymes of the Pse pathway and measuring the release of free
phosphate with the PiColorLock ALS reagents (Innova Biosciences) according to the
manufacturer’s instructions. The assay conditions (relative enzyme concentrations,
stoichiometry, reagents concentrations, incubation times, etc.) were optimized to allow
identification of hits that target any one of the five Pse enzymes (see Materials and Methods).
The final concentrations of each H. pylori enzyme are provided as supplemental data (Table S1).
In a preliminary screening of over 20,000 compounds these conditions led to a Z'-factor of 0.88

indicating that the assay was robust and suitable for HTS (supplemental data, Fig. S1).
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Using this assay, we have completed in duplicate an HTS of a library comprising
approximately 100,000 small-molecule compounds in order to identify inhibitors for the 5
enzymes of the pathway (Fig. 2). This screening was carried out at the compound concentration
of 10 uM. The quality of the screen allowed us to establish 40% inhibition as a threshold for the
identification of hits. This led to a hit-list of 1,773 unique compounds from two independent
primary screens (within the red square in Fig. 2). Chemical similarity based clustering of these
hits revealed that a certain fraction of them comprises derivatives of a small number of
chemical scaffolds. For example, even at a deep level of clustering corresponding to 500
clusters, there were 28 clusters each containing at least 10 close analogs, with 7 clusters

represented by at least 20 congeners (supplemental data, Fig. S2).

Secondary screening hit validation

It was important to confirm the primary hits obtained with a secondary assay using a different
technique. To this end, we next used label-free high-throughput mass spectroscopy (HTMS)
screening with RapidFire technology to both confirm the primary hits and to identify which of
the 5 enzymes was the respective target of each of those primary hits. The RapidFire HTMS
incorporates automated sample handling, in-line solid-phase extraction (SPE) cartridge system
for sample clean-up and analyte concentration, and an injection system coupled to a triple-
quadrupole mass spectrometer. The typical throughput of the instrument is approximately 500
samples per hour. The secondary HTMS screens were carried out against each of the four

enzymes from the Pse pathway, separately or in combination.
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225 RapidFire HTMS methods were established for the simultaneous detection of multiple
226  reaction monitoring (MRM) signals of substrate and product for individual enzyme, giving no
227  signal crosstalk between the channels, thus allowing the percentage conversion to be

228  calculated. Since all the substrates and products in the Pse pathway are hydrophilic (Fig. 1),
229  solid-phase cartridge of HILIC {type Z) and Graphitic Carbon (type D) were evaluated, and

230  Graphitic Carbon cartridge gave the better performance and was chosen for the analysis. The
231 sampling and running parameters were optimized so as to give the best throughput without
232 compromising sensitivity or reproducibility of detection. Mass spectrometric parameters for
233  each compound and the linear ranges of all substrates and products are provided as

234  supplemental data (Table S2).

235 Enzymatic characterization of recombinant purified enzyme PseC, PseH or PseG was
236  performed to develop optimal assay conditions for inhibitors. For enzyme PseB or Psel, the
237  conditions developed in HTS assay were used. The reaction conditions are given as

238  supplemental data (Table S3).

239 The HTMS assay was used for screening of 1,773 unique hits identified from the primary
240  screening. Single-concentration screening was performed at 30 uM compound concentration.
241  The compounds were screened in total of 155 96-well plates for each of the 5 enzymes. The Z'

242 scores for individual plates were calculated using the formula (34):

7' =1 — l3 x (SDposctrl + SDNegctrl)

243
AvBposctrl —~ AVBNegCtrl

12
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where Avg and SD are the averages and standard deviations, respectively, of the inhibition
signals produced by the positive and negative controls (PosCtrl and NegCtrl, respectively) on
each plate. Thus, Z' is reflective of both the assay signal dynamic range and the data variation
associated with the signal measurements and is used for comparison and evaluation of the
quality of assays. A high throughput assay with 1> 2’ > 0.5 score is considered an excellent
assay (35). Therefore, results from the plates with Z’ > 0.5 were analyzed. Hit selection for each
enzyme was based on the Z’ scores obtained for that particular enzyme. Therefore, hit selection
was not necessarily based on the level of inhibition by a particular compound but by how many
standard deviations (SD) that inhibition level deviated from the mean inhibition across all
tested hits (Fig. 3). The following thresholds for hit selection were established: more than 1 SD
for PseB and coupled PseB/PseC assays, more than 2 SD for PseG, PseH and Psel, and more than
3 SD for PseC. This led to 169 hits for PseB, 25 hits for PseC, 89 hits from the coupled PseB/PseC
assay, 118 hits for PseG, 89 hits for PseH and 100 hits for Psel. Because some of these hits were
found to inhibit more than one enzyme, the validated set of Pse-pathway inhibitors thus
comprises a total of 320 compounds that inhibit at least one of the five enzymes in the

pathway.

We repeated chemical clustering for these 320 unique molecular structures and
obtained 146 singletons and 174 compounds clustered into 22 clusters with at least 2
compounds, with the most populated cluster reaching 40 compounds (Fig. 4). The fraction of
compounds that were found to inhibit more than one enzyme in the pathway varies with the
chemical nature of the scaffolds representing the clusters. Overall, 53.4% of clustered

compounds inhibit more than one enzyme, which is similar to the fraction of 52.7% for multi-
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enzyme inhibitors found among the remaining unclustered compounds (singletons).

Structure based virtual screening

In parallel with the HTS screening of an actual compound library, we took advantage of some of
the structural information available for enzymes in the Pse biosynthetic pathway. We carried
out VS of a virtual library of 1.6-million compounds against the crystal structures of PseB and
PseG, using a proprietary VS pipeline that demonstrated some of the better performances in
blind tests (28, 29). We acquired 38 virtual hits from the PseG screening and 42 virtual hits from
the PseB screening and tested them in the 5-enzyme assay described earlier. Four of the PseB
virtual hits showed a reasonable inhibition of the pathway at 10 1M of inhibitor concentration
(supplemental data, Table S4). The PseB inhibition was further confirmed in the secondary
HTMS assay, with degrees of inhibition above the noise level established from the HTMS based
secondary screening experiments. Interestingly, three of these compounds were also found to
significantly inhibit PseG, possibly suggesting certain mimicry by these compounds of the
similar UDP-sugar substrates of PseB and PseG. The comparison of the docked poses of these
inhibitors with the actual binding mode of UDP-GIcNAc in the PseB active site appears to

support this hypothesis (Fig. 5, and supplemental data, Fig. S3).

Kinetic studies and SAR of select PseB inhibitors

We next focused our attention on inhibitors of PseB, the first enzyme in the pathway. Of the
169 compounds targeting PseB as confirmed by HTMS based secondary screening and the four
VS based PseB inhibitors, we selected the top 20 compounds for further kinetic evaluation.
Kinetic studies were completed for each of the 20 inhibitors with the PseB enzyme using the

14



287  RapidFire HTMS PseB assay (see above) where substrate and product were quantified. Of the
288 20 compounds tested, 5 showed good dose-dependent inhibition behaviours, with IC50 values

289  ranging from 12 uM to 72 uM (Fig. 6).

290 Following chemical clustering analysis of the top 320 confirmed hits against PseB (Fig.
291  4), we found that these five PseB inhibitors belonged to two distinct chemical clusters but

292  nevertheless shared a related core substructure (Fig. 6). Inhibitors CD09463 and CD23703

293  belong to cluster 6 and are both substituted N-phenyl-2,5-dimethyl-pyrrole differing only in the
294  position of the hydroxyl and carboxylate substituents of the phenyl ring. Inhibitors CD26389,
295 CD24868, CD36508 belong to cluster 5 and are almost double in size relative to the two cluster-
296 6 inhibitors. One can easily notice that these larger inhibitors bear the core substructure N-

297  phenyl-2-pyrrolidone which is structurally similar to the N-phenyl-2,5-dimethyl-pyrrole

298  structure of the smaller inhibitors. The substitution pattern on the phenyl ring of the core

299  structure is also similar, with CD23703 from cluster 6 matching CD24868 and CD26389 from
300 cluster 5, and with CD09463 from cluster 6 matching CD36508 from cluster 5. Hence, one can
301 expect that the core substructure affords most of the binding affinity to PseB, while the larger
302 substituents of the cluster-5 compounds (at position 3 and 5 of the unsaturated 2-pyrrolidone
303 ring) have a smaller albeit favourable contribution to binding affinity and hence enzyme

304 inhibition. Molecular docking of these inhibitors in the PseB substrate-binding cleft supports

305 this structure-activity relationship data (Fig. 6, and supplemental data, Fig. $4).
306 Inhibition of Campylobacter jejuni PseB enzyme
307  As H. pyloriflagella produced at the cell surface are covered with a membranous sheath,
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detection of the assembled flagellin filaments at the cell surface presents a challenge. In
contrast, the assembled flagella filaments on Campylobacter cells are not covered with this
membranous sheath, which permits the detection of assembled filaments at the cell surface
with flagellin-specific immunological reagents. To allow us to examine the top five PseB
compounds identified above in a cell based assay it was necessary to confirm that these
inhibitors selected were active for the PseB enzyme from the related organism C. jejuni. Four of
the compounds indeed inhibited C. jejuni PseB, albeit at levels slightly lower than inhibition of
H. pylori PseB (Fig. 7). However, one of the cluster-5 compounds (CD36508) appeared not to
inhibit C. jejuni PseB in vitro at the tested concentration, which indicates weaker inhibitory

potency at best.

Cell based assay

To demonstrate efficacy of Pse inhibitors which were identified by secondary, we next
developed a cell based assay (ELISA) to measure flagella production on bacterial cells when
grown in the presence of inhibitor. We focused these assays on compounds identified as PseB
inhibitors. As indicated above, the assay uses C. jejuni 81-176, which has been shown to also
glycosylate the flagellin structural proteins with pseudaminic acid derivatives (14). The flagellin
proteins are detected on the cell surface using a single-domain antibody (sdAb) specific for the
C. jejuni 81-176 flagellin protein (36). The three compounds of the same structural cluster 5
(Fig. 6) were found to inhibit flagellin production in a dose-dependent manner. Inhibition was

observed at compound concentrations of 100 uM or higher (Fig. 8).

Discussion
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Due to significant drug resistance it is becoming increasingly difficult to eradicate H. pylori and
as such the need for new, effective therapeutic regimes to treat H. pylori infections is globally
recognised (37). Here we present the results of a combined HTS and in silico approach to
identify inhibitors of the pseudaminic acid biosynthetic pathway enzymes. Development of a
pathway screening assay offered considerable advantage over parallel screenings of individual
enzymes. The efficiency of screening multiple enzymes simultaneously reduced the total
number of assays required in the HTS and also permitted the use of a commercially available
substrate (UDP-GIcNAc) rather than the more unique sugar pathway intermediates which are
not available commercially and would require more costly enzymatic or chemical synthesis
strategies. The optimised HTS 5-enzyme assay was used to identify 1773 unique compounds
and secondary HTMS was used to confirm the primary hits as well as identify the respective
inhibitor enzyme target. From these analyses, a validated set of 320 compounds have been

identified as inhibitors of at least one Pse biosynthetic enzyme.

Analysis of these validated hits indicated the presence of several chemical clusters with
close congeners, which can be used to generate structure activity relationship.s (SAR) data
valuable for further optimization efforts. Interestingly, with two exceptions (clusters 14 and 20,
see Fig. 4), these clusters include analogs that inhibit more than one enzyme in the pathway.
Inhibiting the biosynthetic pathway simultaneously at several points can be beneficial not only
for increased efficacy and specificity, but also to circumvent eventual bacterial resistance. One
may speculate that the discovery of multi-enzyme inhibitors is a reflection of the substrate
similarities shared by the component enzymes in the pathway. It is also possible that multi-

enzyme inhibition is a direct consequence of the HTS strategy developed here, as it originates in
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the 5 enzyme one-pot assay used during primary screening.

Kinetic analysis combined with molecular docking of five validated PseB inhibitors
provided valuable SAR data (Fig. 6, Fig. S4). The common core substructure of these analogs
(two smaller cluster-6 inhibitors and three larger cluster-5 inhibitors) interacts tightly and
complementarily into the deep pocket of the binding site that accommodates the
pyrophosphate and the sugar moieties of the sugar-UDP substrate. However, the large
substituent at position 3 of the unsaturated 2-pyrrolidone ring of the larger cluster-5 analogs is
solvent-exposed and makes minimal contact with the enzyme, and is not predicted to bind in
the enzyme pocket used for UDP binding. Interestingly, the size of the substituent at position 5
of the pyrrol(e/idine) ring is predicted to override the substitution pattern on the N-phenyl ring.
Consequently, the predicted binding modes of the inhibitors from the two clusters correspond
to flipped orientations of the N-phenyl ring and its substituents within the binding pocket. In
the case of cluster-6 inhibitors, the smaller 5-methyl substituent allows the pyrrole ring to
interact snuggly with the enzyme sub-pocket used for binding the ribose ring of the UDP-sugar
substrate. In contrast, the cluster-5 inhibitors are predicted to have the larger 5-phenyl
substituent interacting in this sub-pocket. This would displace the pyrrolidone ring toward a

more central position in the binding cleft.

The subsequent finding that three out of these five analogs can inhibit flagellin
production in cellular assay is also informative from several viewpoints. First, one of the three
analogs that inhibited flagellin production in C. jejuni was found not to inhibit in vitro the PseB

enzyme at the tested concentration, which is indicative at best of weaker inhibition, although
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all three inhibited similarly PseB from H. pylori (Fig. 7). However, we noted that all three
compounds are also in vitro inhibitors of PseG in H. pylori (52-70% inhibition at the
concentration in HTMS assay). Although we have not tested their activity against PseG from C.
jenuni, one can speculate that the multi-enzyme inhibitory characteristic of these and other
compounds discovered in this study may provide a mechanism for achieving robust efficacy in
the biological environment. Secondly, we found that the two smaller cluster-6 analogs do not
possess cellular activity despite showing inhibition of both PseB and PseG enzymes (in both
H.pylori and C. jeuni). Given that these analogs are negatively charged with a carboxylate
moiety, their membrane permeability is expected to be quite poor. However, the derivatization
of the larger analogs from cluster-5 leads to a significant increase in their hydrophobicity
(calculated octanol-water partition coefficient of 3.5-6.5) relative to the smaller inactive
analogs from cluster-6 (only 2.3). Hence, increased hydrophobicity and membrane permeability

of these pathway inhibitors is another key property required for achieving cellular efficacy.

The identification of three inhibitors which show activity in bacterial cell-based assays
provides a robust starting point for further hit-to-lead evaluation. Further characterization of
the binding modes of these inhibitors will provide a guide for structure-based design of more
potent and selective inhibitors towards the Pse biosynthetic enzymes which can then be tested
as novel anti-virulence therapeutics targeting H. pylori. Furthermore, the strategies utilized
here may be useful for identifying inhibitors of other related nonulosonate pathways, such as

legionaminic acid from Legionella pneumophila.
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Figure 1. The pseudaminic acid biosynthetic pathway in H. pylori and C. jejuni. Biosynthetic

intermediates are: (1) UDP-GIcNACc; (Il) UDP-2-acetamido-2,6-dideoxy-B-L-arabino-hexos-4-

ulose; (111} UDP-4-amino-4,6-dideoxy-B-L-AltNAc; (IV) UDP-2,4-diacetamido-2,4,6-trideoxy-p-L-

altropyranose; (V) 2,4-diacetamido-2,4,6-trideoxy-L-altropyranose; (VI) pseudaminic acid.
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Figure 2. HTS screening using 5-enzyme primary assay. The HTS library of 96,116 compounds
was screened twice against a mixture of H. pylori Pse pathway enzymes with concentrations
and assay conditions as shown in supplemental Table S1. The area enclosed in the red rectangle
focuses on 1,847 hits (corresponding to 1,773 unique compounds) showing more than 40%
inhibition in both screens. Note that 3 standard deviations from mean inhibition corresponds to

inhibition thresholds of at least 41% and 42% in screens #1 and #2, respectively.
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deviations (SD) from the mean for each screened enzyme (see legend).
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Figure 5. Example of confirmed virtual screening hit. Chemical identification is given as the ID

in the ZINC database (http://zinc.docking.org). /n vitro data is from 5-enzyme pathway assay

and HTMS enzyme-specific assays. The image on the right depicts a docked pose of the inhibitor
(sticks model with C atoms in white) overlaid with the actual binding mode of the UDP-GIcNAc
substrate (sticks model with C atoms in purple) in the PseB active site located at the interface of

two enzyme molecules (shown as ribbons of different colors, PDB entry 1GN4).
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Figure 8. Inhibition of C. jejuni flagella production. Whole cell ELISA assay using flagellin
specific antibody FlagV1. Black bars are C. jejuni 81-176 and C jejuni 81-176 pseB::Cm controls
grown in MH broth with DMSO and white bars are C. jejuni 81-176 grown in MH broth with
variable concentration of inhibitor as indicated. A. Inhibitor concentration 500 uM, 50 pM, 500

nM, 50 nM, 5 nM. B. Inhibitor concentration 500 uM, 250 uM, 100 uM, 50 uM.
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