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Abstract

The characteristics of natural environments, as well

as the limitations on representations, sensors, and actua-

tors, make navigational mistakes inevitable. This paper

looks at how to detect and diagnose mistakes autonomous

mobile robots make while navigating through large-scale

space using vision. Mistakes are perceptual, cognitive, or

motor events that divert one from the intended route.

Detection and diagnosis consist of realizing a mistake has

occurred, determining what it was, and when it happened.

This paper describes an approach that detects mis-

takes by finding mis-matches between observations and

expectations. It diagnoses mistakes by examining knowl-

edge from a variety of sources, including a history of

observations and actions. It supports these operations by

using symbolic visual information to compare expecta-

tions with observations augmented by a priori knowledge.

This paper describes MUCKLE, the simulation used to

test the approach, and presents experimental results that

demonstrate its effectiveness.

1 Introduction

Navigation is problematic. Sensors cannot measure

the environment precisely or completely. The information

they provide contains quantitative and qualitative error.

Models of this information are limited by the representa-

tional formalisms used. The limitations of actuators also

result in error that ranges from inaccuracy to gross failure.

In addition, natural environments are constantly chang-

ing. Objects move and change appearance. For these rea-

sons, failures in navigation are inevitable. Autonomous

robots must handle them to navigate successfully.

The research described in this paper distinguishes

between mistakes and the more common concept of error.

* NRC No. 38376, © Copyright 1995 by the National

Research Council of Canada.

For the most part, the concept of error in mobile robotics

research encompasses only numeric variation, which is

not sufficient to model mobile robot behavior. Occasion-

ally, quantitative variations are so large that results are

qualitatively different than expected. For example, a robot

may turn too late onto the wrong path because its odome-

try is significantly off. In addition, much information that

is relevant in navigation is symbolic and qualitative, such

as an object’s identity and composition. In such cases, the

idea of quantitative error no longer applies. This paper

uses the term “mistake” to refer to both kinds of categori-

cal inaccuracies, numeric and symbolic.

Because much of mobile robotics research defines

error quantitatively, most approaches deal only with quan-

titative navigational failures. Those few that do handle

qualitative failures deal for the most part solely with

unexpected obstacles. In addition, only a few navigational

systems use visual landmarks, and they do not deal explic-

itly with incorrectly identifying landmarks. In general,

most navigational systems have developed strictly local

strategies for dealing with navigational failures.

This paper discusses an approach for detecting and

diagnosing mistakes that autonomous mobile robots make

while navigating through large-scale space using

vision [8]. A mistake is a perceptual, motor, or cognitive

event which causes one to stray significantly from an

intended route. Detecting a mistake consists of inferring

from one or more symptoms that a mistake has occurred.

Diagnosing a mistake involves investigating the symp-

toms to find their cause and determine what the mistake

was as well as when or where it occurred.

Detecting and diagnosing mistakes entails searching

through a large problem space of actions and perceptions

to ascertain which of them may be incorrect. An important

characteristic of this problem is that mistakes usually do

not manifest themselves immediately. They are often dis-

covered a significant amount of time and/or distance after

they occur, through apparently unrelated symptoms. As a

result, the space of possible mistakes is too large to search

without using heuristics to prune it.



Detecting and diagnosing mistakes requires all of the

available relevant information to guide and constrain

search. A solution to this problem consists of four parts.

Visual information is represented using a detailed sym-

bolic formalism to capture the information essential for

navigating and detecting and diagnosing mistakes. This

information can then be used to compare observations and

expectations augmented by a priori knowledge. Mistakes

are detected by identifying mis-matches between these

observations and expectations. Finally, mistakes are diag-

nosed by examining knowledge from a variety of sources,

including a history of observations and actions.

This approach has been implemented and tested

using MUCKLE, a system that simulates visual and motor

capabilities. Using a simulation has enabled the research

to focus on developing formalisms and strategies for

detection and diagnosis without having to implement gen-

eral vision and motor control systems. Simulations

involve pitfalls, however; the simulation avoids them in

part in two ways. One aspect of navigation is that it

requires filtering an immense amount of data and select-

ing what is relevant. The simulation incorporates this by

including irrelevant data. Another characteristic of robots

is that their capabilities for sensing and motor control are

imperfect. The simulation models this as well.

2 Related work

Many researchers in mobile robotics have developed

reactive approaches to navigation [3]. However, they do

not, in general, deal explicitly with mistakes. Such sys-

tems do not have explicit expectations, and so for them,

there are no unexpected situations. Having expectations

requires pulling together a variety of information that is

typically distributed or not present at all in a purely reac-

tive system. In addition, reactive systems may have a des-

tination, but often no subgoals or specified route to follow.

As a result, it is not possible to not follow the route cor-

rectly. Running into obstacles or interpreting sensor data

incorrectly are the only kinds of mistakes possible.

Traditional approaches to mobile robot navigation

are based on motion planning (e.g., [9]). Many of them

detect only a limited kind of mistake: unexpected obsta-

cles that prevent a robot from following a path. Many of

these systems handle mistakes simply through prevention,

which usually consists of redundant low-level image

processing techniques. A somewhat more sophisticated

system is Hilare, which can also detect absent or incor-

rectly located beacons and failing sensors [4].

A recent trend in mobile robotics is to combine reac-

tive and deliberative navigation to produce fast, robust,

intelligent behavior. Most of these approaches de-empha-

size the perceptual aspects of the problem, and do not

model important and problematic characteristics of visual

information. The approach developed by Noreils, for

example, handles external faults, including changes in the

environment, and internal faults involving robot hardware

and sensors, but does not deal with visual mistakes [7].

Another approach used is model-based navigation.

FINALE uses a model of the robot’s position uncertain-

ties to guide scene interpretation [5]. It treats unexpected

objects as obstacles, and if it can’t match its expectations

and perceptions, it turns and tries again. This, like many

model-based approaches, requires a geometric model of

the environment, which can be expensive to generate.

Landmark-based navigation relies on a priori knowl-

edge of landmarks to guide motion (e.g., [2,6]). Much of

this work deals more extensively with visual and motor

mistakes. However, most of the mistakes are quantitative,

not qualitative. One exception is ELMER, which detects

certain qualitative errors by adding explicit “error transi-

tions” to plans and monitoring plan execution [10]. Errors

are found by comparing events (features seen or distances

travelled) that occur during current and past plan execu-

tions. However, this work lacks a thorough treatment of

mistakes and mechanisms for detecting them, and does

not address diagnosis, which can aid and inform recovery.

3 Solution

This section discusses the four components of the

approach: formalisms for representing symbolic visual

information, methods for comparing this information, and

heuristics for detecting and diagnosing mistakes.

3.1 Representing symbolic visual information

Detecting and diagnosing mistakes relies on repre-

senting detailed information about expectations and per-

ceptions about the environment. The components of the

environment, such as things, places, paths, and portals,

are called entities. Entities have three types of attributes

that play a vital role in navigation. Attributes for recogni-

tion include position-independent information such as the

entity’s identity, size, and shape. Attributes aiding in

localization include the direction the entity is facing and

its direction and distance from the viewer. Attributes

which are useful in detecting and diagnosing mistakes

include what other entities this entity can be confused

with, as well as how likely it is to move from its location.

The navigation system uses a route description, an

ordered list of one or more instructions that describe how

to reach a destination. Prescriptive instructions specify

motions to execute in terms of distances, directions, and

entities. Descriptive instructions specify entities the robot

should and should not see while navigating.



3.2 Comparing symbolic visual information

A crucial component of mistake detection and diag-

nosis is comparing visual information. First, a robot must

compare its expectations with its perceptions to determine

if it is where it expects to be. Second, a robot must be able

to identify entities that do not match its expectations, in

case this information is needed later to diagnose mistakes.

Since qualitative results do not provide enough informa-

tion to make navigational decisions and detect and diag-

nose mistakes, the comparison process produces a real-

valued number between 0.0 and 1.0, inclusive, called

compatibility, which describes the quality of a match

between groups of entities as well as single entities.

The first task is formulated as finding the best corre-

spondence between a set of expected entities generated

from the route instructions and a set of perceived entities.

The best correspondence has the highest average compati-

bility of the component entity matches. Finding the best

correspondence requires comparing expected and per-

ceived entities and calculating the compatibility for each

pair. To allow for no correspondence being found for an

expected entity, the list of perceived entities includes a

“null entity” that can match any expected entity. (This is

similar to the idea of nilmapping [5].)

The second task is formulated as finding the best

match for each perceived entity from the set of generic

entities, which have been provided a priori. The best

match is the match with the highest compatibility. Finding

the best match requires comparing perceived and generic

entities and calculating their compatibilities.

Finding the best correspondence in both cases is

problematic because it is not computationally feasible to

compute all possible correspondences when these sets

have more than five or six elements. This process is con-

strained using a generic entity taxonomy based on similar

attributes. Only very similar entities are compared at first;

if no matches are found, this constraint is relaxed.

Calculating the compatibility of two entities requires

finding the similarities between their attributes and com-

bining these values. This is done using the Dempster-

Shafer theory of evidential reasoning as reformulated by

Andress and Kak [1]. This theory takes as input three

belief measures about each attribute value match: similar-

ity, dissimilarity, and ignorance. MUCKLE calculates

these belief measures using look-up tables for symbolic

values and arithmetic functions for numeric values.

3.3 Detecting mistakes

To detect mistakes, the robot generates expectations,

compares these expectations with its observations, and

determines when they do not match. Visual expectations

provide primarily local guidance for executing individual

instructions. Information sources for visual expectations

include instructions and a priori generic knowledge. For

example, knowledge about an entity’s usual size may be

used to fill gaps in information provided by an instruction.

Motion expectations from the route description provide

local and global guidance. Local guidance tells how far

the robot should travel to execute an instruction. Global

guidance tells how far the robot should travel to execute

the route description and in what direction the goal lies.

The robot generates rough local and global expecta-

tions in advance and refines them while navigating. Ini-

tially, the robot uses the distances specified in instructions

to calculate the mean instruction duration (MID), an esti-

mate of the average distance that each motion instruction

covers. The robot uses this estimate to add quantitative

information to instructions that express distances qualita-

tively, in terms of landmarks. Then it calculates the direc-

tion and total distance to the destination, using the

distance and direction specified by each prescriptive

instruction. As the robot executes instructions, it updates

estimates of the direction to the destination, the average

distance of instructions, and how far it has travelled since

it began executing the current instruction and the route

description. It updates its estimates using information

based on the actual results of executing instructions so far

and the unexecuted remaining instructions. This informa-

tion allows the mobile robot to decide if an instruction or

the entire route is taking too long to complete.

One set of perceptions and one instruction alone do

not contain enough information for the robot to decide

whether it has made a mistake. It is necessary to combine

the results over time. This process is made more difficult

because the expectations used for comparison involve

disparate information: distances, directions, and entities

that should be seen at the beginning or end of an instruc-

tion, sometime, never, or continually.

The solution to this problem has three parts. A real-

valued number, called conviction, represents the mobile

robot’s certitude that it has not made any mistakes. To

incorporate the uncertainty about distance travelled, the

conviction decreases by a small amount after each of the

robot’s motions. Sigmoid functions then combine various

consistency values, which are the results of the compari-

sons, into a single new measure of conviction. These

functions take two inputs, the current conviction and a

consistency measure, and produce one output, a new con-

viction. These functions are called sigmoid because they

are the three-dimensional analog of an s-shaped curve.

3.4 Diagnosing mistakes

This approach deals with three classes of mistakes.



False negatives occur when the robot fails to see an entity.

They depend on a variety of factors, including lighting,

unusual viewpoints, and attention. These mistakes usually

lead to travelling too far. Mis-recognition mistakes occur

most frequently with entities that look similar. These mis-

takes include seeing an entity and either incorrectly iden-

tifying or failing to identify it as an expected landmark.

The former type of mistake leads to travelling too far, and

the latter to not travelling far enough. Motor control mis-

takes consist of problems with steering and locomotion.

Errors in estimating motion also fall into this category.

Consequences of these mistakes include travelling too far,

not far enough, or turning incorrectly.

Diagnosing a mistake consists of determining what

caused the robot to stray from its route, and when or

where it happened. A specification of the “what” includes

the events making up the mistake, the general type of mis-

take, and the consequence of the mistake. A specification

of the “when” includes the instruction the mistake

occurred during and the distance or time after starting to

execute the instruction that the mobile robot made the

mistake. To provide the necessary information to diagnose

mistakes, the mobile robot keeps a record of all of its

motions, perceptions, and comparisons while navigating.

Also useful are certain kinds of a priori knowledge, such

as what entities are confusable with other entities.

The diagnostic process has four steps. The first step

is to analyze and calibrate the history. This produces sev-

eral statistics, including distances of the instructions that

took the least and most distance to complete, the MID,

and its standard deviation. Another statistic is the mean

distance interval, which begins at the shortest distance and

ends at the MID plus the standard deviation.

The second step consists of applying three classes of

strategies to generate evidence about possible mistakes.

One class searches for evidence of mis-recognitions that

indicate the robot should have completed an instruction

later than it actually did. Another class searches for evi-

dence of mis-recognitions or false negatives that suggest

the robot should have completed an instruction sooner

than it did. A third class of strategies looks for evidence of

motor control mistakes, by searching for alternate paths

that lie in directions similar to the robot’s motion.

These strategies generate many pieces of evidence

about possible mistakes. The third step of the diagnostic

process uses a set of heuristics to refine this evidence and

generate hypotheses about what mistake occurred and

when. These heuristics uses the results of visual compari-

sons to rank a hypothesis based on whether it relies on the

best match at that location or one or several good matches.

The fourth step uses heuristics about the timing of the

hypothesized mistake to select the best hypothesis. One

heuristic eliminates evidence that suggests a mistake has

occurred very early or very late in executing an instruc-

tion, since a mistake is unlikely to occur then. Another

heuristic eliminates hypotheses inconsistent with the

instruction’s duration. For example, a hypothesis is incon-

sistent if it asserts the robot stopped too soon while exe-

cuting an instruction and if the instruction’s duration is

longer than the MID. A third heuristic favors hypotheses

about mistakes that occur near the MID over those that

occur much earlier or later. The fourth heuristic, which

uses the mean distance interval, is less reliable and is used

only to resolve ties. This heuristic relies on the tendency

for instructions in a particular route description to take the

same order of magnitude of distance to execute.

4 Implementation

MUCKLE, the system implementing this approach,

consists of two parts: the navigation and simulation sys-

tems. The navigation system interprets route instructions

that have been generated by hand and produces motion

commands. The simulation system includes a representa-

tion of the environment, a vision simulator, and a motor

control simulator. This section discusses the simulation

system and presents the experimental results.

4.1 Simulation system

The environmental map represents the world that the

simulated autonomous mobile robot moves in. It consists

of thirty-six types of entities, including various kinds of

paths, places, portals, and things. It includes several kinds

of entities not useful in navigation to make the problem

more realistic, such as bushes, light poles, and people.

These entities may interfere by occluding other signifi-

cant entities, by adding to the possibilities for identity

confusion, or by blocking the robot’s path unexpectedly.

The map consists of a two-dimensional array. Each cell

represents a one meter square area. (In the examples dis-

cussed in this section, the environment is represented by

an array of 50 by 50 cells.) Each cell contains two point-

ers to the static entity and dynamic entity, if any, occupy-

ing the cell.

The vision simulator uses the environmental map to

construct an iconic view, which is a two-dimensional per-

spective view of the environment from the simulated

robot’s perspective. The iconic view consists of a two-

dimensional array in which rows correspond to altitude

and columns to direction. Cells contain a pointer to the

entity seen at that altitude and direction plus its distance.

The vision simulator incorporates visual error by corrupt-

ing position-independent entity attributes and distorting

the environmental map before creating the iconic view.

The motor control simulator simulates the execution



of motion commands. At any one time, the simulated

robot occupies only one cell and has one of eight possible

orientations, which are multiples of 45 degrees. The simu-

lated robot can move from the cell it is occupying to any

one of that cell’s eight neighbors in one time interval. As

a result of this coarse discretization, only certain types of

motion mistakes are possible. The size of the error that

the simulated robot may make in turning can only be a

multiple of 45 degrees. This error will occur only when

there is another path present in the incorrect direction.

Another type of mistake is that the simulated robot may

either underestimate or overestimate its motion.

4.2 Experimental results

Eight experiments were run using MUCKLE.

MUCKLE correctly detected that a mistake occurred in all

eight experiments. It correctly diagnosed the mistake in

five of them (A, C, D1, D2, and E2). One of these experi-

ments, A, is described in detail below. Table 1 summa-

rizes the results of the remaining experiments.

Figure 1 shows the environment of experiment A and

the simulated robot’s path. The simulated robot and its

path are represented by black shapes resembling a Pac-

man. The environment is populated with a bush, mailbox,

signpost, signboard, flagpole, statue, bench, set of stairs,

and foot-bridge; five buildings, four hedges, three bicycle

racks, four trees, and two roads; and many light poles,

sidewalks, grass plots, and sidewalk intersections.

Table 2 shows the route description the simulated

robot used to navigate in experiment A. Figure 1 shows

the correct route it took in the first trial when it did not

make any mistakes. In the second trial, the environment

also contained a person, in the sidewalk intersection to the

left of the flagpole. Figure 2 shows the path the simulated

robot took when it incorrectly identified the person as the

statue mentioned in the sixth instruction. As a result, the

simulated robot stops executing instruction (6) too soon.

In this experiment, the simulated robot detects that it

Mistake Consequence Symptom Diagnosis

-visual- -motor- too too wrong low too dead actual

Experiment mis-recognition false negative distance direction soon late way conviction far end mistake

A • • • 1st

B1 • • • 2nd

B2 • • • 3rd

C • • • 1st

D1 • • • 1st

D2 • • • 1st

E1 • • • 2nd

E2 • • • 1st

Table 1: Experimental results.

Table 2: Route description (experiment A).

(1) begin on a sidewalk

(2) go to sidewalk intersection with bench to left

(3) turn right 90 degrees

(4) go to sidewalk intersection, flagpole to right

(5) turn right 90 degrees

(6) go to sidewalk intersection near statue

(7) turn left 90 degrees

(8) go to foot-bridge

(9) stop on foot-bridge

has made a mistake and stops when it reaches the road. Its

conviction drops below threshold here, since it expects to

be travelling on a sidewalk. After generating hypotheses,

there are two hypotheses that are the most likely. The first

is that while executing instruction (4), the simulated robot

should have seen a flagpole and stopped sooner, when it

was at the first sidewalk intersection after turning left at

the bench. The second hypothesis is that the simulated

robot mis-recognized the person as a statue while execut-

ing instruction (6). The simulated robot correctly chooses

the second hypothesis because the duration of instruction

(6) is closer to that of the shortest instruction than to the

mean instruction duration (MID), making this instruction

more likely to have been incorrectly executed.

5 Discussion

In all eight of the experiments, MUCKLE correctly

detected a mistake. In five of the eight, it correctly diag-

nosed the actual mistake. In the rest, it twice ranked the

actual mistake second and once ranked the actual mistake

third. This performance is reasonable given the nature of

the problem. On average, over 200 pieces of evidence are

generated in each experiment. The diagnostic process is

able to refine this large amount of data into a small

number of hypotheses and ranks the actual hypothesis as

no worse than third in all of the experiments.

The experiments run test many aspects of this



approach for detecting and diagnosing mistakes. The

experiments provide good coverage of the many naviga-

tion mistakes possible. The results also demonstrate the

usefulness and feasibility of this approach. The results do

suggest that one of the heuristics, however, is not reliable

enough. The heuristic that uses the mean distance interval

is responsible for all three diagnostic errors, and only aids

in one correct diagnosis. The performance of the system

could be improved by refining or replacing this heuristic.

This approach will not always correctly diagnose the

mistakes it has detected or even detect all of the mistakes

that have occurred. In fact, it will occasionally detect

phantom mistakes. However, this should not be surpris-

ing, since one of the difficulties inherent in navigation and

thus in detecting and diagnosing mistakes is that the infor-

mation available is inaccurate and incomplete.

An important limitation of the research described in

this paper is using a simulation for testing. This allowed

the research to focus on the problem of reasoning about

navigational mistakes, but also made it possible to sim-

plify many aspects of mobile robotics, including charac-

teristics of motor behavior and visual information. A clear

direction for future research is to modify this approach

and implement and test it on a mobile robot. One way to

provide a limited form of the required object recognition

would be by labelling objects with bar codes.
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