
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Third Annual Conference on Privacy, Security and Trust (PST 2005)
[Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=8c4e011d-ef1d-4c87-a13a-ee97232f4870

https://publications-cnrc.canada.ca/fra/voir/objet/?id=8c4e011d-ef1d-4c87-a13a-ee97232f4870

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Usable Firewall Configuration
Geng, Weiwei; Flinn, Scott; DeDourek, J.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Usable Firewall Configuration *

Geng, W., Flinn, S., and DeDourek, J.
October 2005

* published at the Third Annual Conference on Privacy, Security and Trust

(PST 2005). St. Andrews, New Brunswick, Canada. October 12-14, 2005.

NRC 48268.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Usable Firewall Configuration

Weiwei Geng
Faculty of Computer Science
University of New Brunswick

Fredericton, Canada
Email: weiwei.geng@unb.ca

Scott Flinn
National Research Council

Fredericton, Canada
Email: scott.flinn@nrc.gc.ca

John DeDourek
Faculty of Computer Science
Unversity of New Brunswick

Fredericton, Cananda
Email: dedourek@unb.ca

Abstract

Configuration is perhaps the most important aspect

of a firewall. It is often hard to fully understand the

implications of a given configuration, giving rise to two

problems: it is hard to write rules to enforce the ex-

pected security policy correctly, and it is hard to under-

stand a set of rules to make necessary changes. In this

paper, we briefly introduced the IP packet filtering fire-

wall followed by an analysis of configuration problems.

We review related work and discuss the effectiveness of

other approaches from a practical perspective to further

illustrate our solution. We then describe a solution that

combines simulation, visualization and interaction and

describe a prototype and an evaluation of the tool.

Keywords: Configuration, firewall, network simu-
lation, security, usability, visualization

1 Introduction

The Internet has been growing dramatically since
its inception. In recent years, the number of hosts con-
necting to the Internet has approximately doubled ev-
ery six months. Along with such expansion, various
kinds of services have been widely deployed on the In-
ternet. People derive a lot of benefit from the Internet,
but at the same time, its negative side brings significant
problems. As a result, network security, which inter-
ested relatively few people in the past, has become a
hot topic in both industry and academia.

Firewalls play an important role in securing a net-
work. Typically, firewalls are used as the first line of
defense in the whole security system of an organization.
When a firewall device is deployed, it has to be config-
ured to match the security policy of that organization.
However, there are problems:

1. It is hard to configure a firewall correctly. When
configuration errors are made, firewalls don’t behave

as expected so the security policies are not properly
enforced.

2. Understanding an existing configuration is hard.
Typically, security policies are revised on a more or
less continuous basis, requiring the system administra-
tor to revisit the existing configuration each time to
make corresponding changes. A similar problem arises
when someone else needs to inspect the existing config-
uration, e.g., when a new system administrator takes
over.

In this paper, we propose an interactive tool to
help the system administrator understand and update
firewall configuration. Section 2 provides some back-
ground knowledge relating to firewall configuration,
and reviews related work. A detailed description of
our solution is presented in Section 4. In Section 5,
we briefly outline the structure of our tool and some
implementation issues. Evaluation is discussed in Sec-
tion 6. Finally, Section 7 summarizes our findings and
suggests some directions for future work.

2 Background

2.1 IP Packet Filtering Firewalls

Firewalls can be a piece of software, or a physical
machine, which stands between the local network and
the external network, forming part of a security perime-
ter that monitors data flow in and out. Firewalls are
categorized into different groups depending on the type
of filtering they do. An IP packet filtering firewall is a
common type with a straightforward purpose: a choke
point that assumes the responsibility of examining ev-
ery incoming and outgoing packet, deciding to either
block or pass the packet based on the rules specified
by the administrator. Each rule specifies characteris-
tics of target packets (e.g., source address, destination
address etc.) along with an action to apply to match-
ing packets (e.g., accept, log etc.). A typical IP packet
filtering rule is:

• allow from 115.120.30.5 to 10.0.0.2/21

TCP

This rule indicates that the firewall will allow the for-
warding of all TCP packets from any port on the ma-
chine with the IP address 115.120.30.5 to port 21 of
the machine with the internal address 10.0.0.2. In
plain English, the security policy implied by this rule is
“grant FTP access from machine A to our FTP server”.
The activity of specifying a set of such rules that en-
force the security policy of an organization is referred
to as configuring a firewall.

Given a set of rules, a firewall checks each packet it
receives against each of its rules, executing the corre-
sponding action when a packet matches a rule. That
is to say, the firewall will execute the action of the
first rule matched regardless of any following rules that
may match. Usually a default rule, such as a rule to
block every packet, appears at the end of the rule set to
handle packets that did not match any preceding rule.
More general information about firewall technology can
be found in [3, 8]

2.2 Problems

Tools for configuring IP packet filtering firewalls
have improved considerably in recent years, but admin-
istrators still experience difficulties configuring them
correctly. Generally speaking, an erroneous configura-
tion either blocks packets that are supposed to be au-
thorized or it allows packets that should be discarded.
A recent quantitative study of real world firewall rule
sets shows that configuration errors exist in every rule
set investigated [10]. Errors of both kinds may permit
intrusions that can compromise the internal network in
the worst possible ways, including disclosure of sensi-
tive information, malicious sabotage of local systems,
hijacking of local systems to attack third parties, and
many others. These mistakes have several causes:

• The configuration language is arcane. Most com-
mon packet filtering firewall rule languages are
hard to understand. Users have to translate high
level security policies into low level rule expres-
sions, and this translation process is error-prone.
It is easy to mistype IP addresses or port num-
bers, even though the administrator knows clearly
what IP addresses correspond to which subnets.
For example, a frequent mistake is that adminis-
trators mistype the common internal network ad-
dress 192.168 as 198.162, especially when the rule
is surrounded by many other similar IP addresses.

• There are interactions between rules. This is the
cause of most mistakes in firewall rule sets, and it

usually takes more mental effort to discover such
mistakes. The addition, deletion or modification
of a rule can interact with other rules in the rule
set, and this interaction is not clearly visible to
administrators. For example, the administrator
may simply append one rule blocking packets from
the host 131.202.2.10 without being aware that
a preceding rule allows packets from the subnet
131.202.*. After the mistake is located, correct-
ing the rule may create new interaction with other
rules, and so forth. This cascade effect makes the
configuration job more difficult. The complexity
of rule interaction is multiplied in the context of
large enterprise networks containing multiple fire-
walls because the global behaviour of the network
depends on the interactions between independent
rule sets.

• The number of rules is large. In the case of per-
sonal firewalls that are used to protect individ-
ual computers, the rule sets usually consist of a
handful of rules. With reasonable effort, time
and technical expertise, one can completely un-
derstand what the rules mean. However, as the
number of rules grows to enterprise level, the com-
plexity of understanding the rule set increases dra-
matically. In the quantitative study of 12 rule sets
from real companies in [10], the average number
of rules was 244 and the largest rule set contained
1400 rules.

For these reasons, human users often struggle to cor-
rectly translate security policies into low level firewall
rules. Even experienced security managers must ex-
pend considerable time and mental effort to understand
each line and diagnose errors, especially when dealing
with large scale rule sets.

3 Related Work

To address the problems outlined above, researchers
have taken a number of different approaches that can
be broadly grouped into two categories:

1. Techniques to reduce the chance of errors when
system administrators are writing firewall rules.

2. Analysis of rule sets for the purpose of detecting
errors.

We refer to these as active approaches and passive ap-
proaches respectively.

3.1 Active approaches

• Methodology of configuring a firewall. Net-
work security experts suggest that firewall rules
with higher defensive ability can be achieved by
following certain guidelines or methodology [9].
By following these guidelines, system administra-
tors can expect the rules they create to more ac-
curately implement their security policies.

• Intuitive graphical user interfaces. Instead
of dealing directly with arcane rule languages, ad-
ministrators can be given tools dealing directly
with higher level concepts such as zones and gate-
ways. Drag-and-drop techniques allow users to
manipulate high level objects to translate security
policy into raw firewall rules [1].

3.2 Passive approaches

Passive approaches try to detect and eliminate mis-
takes within an existing rule set.

• Algorithms for analyzing rules. Several
projects employ this approach. Examples in-
clude [6, 4, 2]. Algorithms from different areas
of theoretical computer science are introduced to
tackle the problem. Generally speaking, firewall
rules are first represented in a way that is adapted
to the algorithm and then analyzed by the tool.
The tool will either try to solve the problem pro-
gramatically or prompt the user with errors de-
tected.

• Network vulnerability testing tools. The ad-
ministrator can run these tools on specific ma-
chines, on both sides of a firewall, to test the cor-
rectness of configuration. Packets with different
headers, which represent different service types,
will be sent. By examining the returning packets,
the tools can detect unwanted holes in the firewall.

• Query engines. There are two significant
projects that have defined this category. One is
a novel firewall analysis engine from Mayer, Wool
and Zinski that approached the problem by simu-
lating traffic flow passing through the firewall [7].
The simulation result, which consists of the source,
destination and service type, can be queried by
users so that users can look for inconsistency be-
tween the results and the expected security pol-
icy. Another expert system does roughly the same
thing, using a knowledge base to infer the security
policy from the rule set rather than simulating net-
work traffic [5].

3.3 Unsolved problems

Active approaches significantly reduce the effort
that users must expend to specify a firewall rule set.
However, they all lack a good way to verify the re-
sulting configuration. To validate it, users must either
examine the generated rules, or deploy the configura-
tion in a realistic setting and observe how it behaves.
These alternatives are impractical. The first one brings
users back to the low level rules, while the second can
be expensive and may require that testing be done in a
live (potentially vulnerable) setting. In fact, rule sets
are frequently reviewed and modified after their ini-
tial deployment, and it is not feasible to build a fresh
new rule set from scratch every time even for a small
change. Passive techniques approach the problem from
the other direction in an effort to address these limita-
tions.

• Algorithms for analyzing rules. Techniques
falling into this category generally regard configu-
ration errors to be conflicts between rules. They
aim to produce a rule set in which all rules are
strictly disjoint. However, the following observa-
tions are evident in almost any real rule set.

1. Conflicting rules do not necessarily reflect
configuration mistakes. Intentional overlaps
of multiple rules exist in almost every fire-
wall rule set. Consider a simple example in
which one subnet is considered to be safe, ex-
cept that one of its hosts needs to be blocked.
The interaction of two rules enforces such a
policy very well even though it is considered
to be a conflict that should be detected and
eliminated by the algorithm.

2. No conflict of rules does not necessarily mean
no configuration error. In fact, an absence of
conflicts may itself be an error. In the previ-
ous example, one host in a subnet is treated
as a special case. A typo in its IP address
might result in a set of rules having no con-
flicts, but having an error (the wrong host is
blocked) that may lead to unauthorized ac-
cess and malicious activity.

For these reasons, we believe that the algorith-
mic approaches are also impractical. Given a real
rule set from a sizable network, these approaches
may report far more errors than it actually con-
tains. Although identifying a larger set of poten-
tial errors may theoretically increase the chances
of finding all real errors, the need to examine a

Figure 1. Activity Cycle in Firewall Configura

tion

large number of false positives will reduce the ef-
fectiveness of the approach.

• Network vulnerability testing tools. Network
vulnerability testing tools are often used to de-
tect firewall configuration holes despite a number
of drawbacks. First, a full scan is usually time
consuming due to network latency. Second, these
tools need to be run in a real network, which means
that one must deploy the firewall rule set before
its correctness can be confirmed. Alternatively, a
test environment can be carefully created if you
don’t want to expose the real network while test-
ing the firewall configuration. However, this task
is difficult because real networks are complex and
expensive to duplicate. Consequently, either the
test environment is not accurate enough or creat-
ing a perfect environment is not feasible.

• Query engines.

These creative solutions have overcome some of
the limitations of the two categories of approaches
discussed above: they bring the human user into
play, they avoid the risk of being compromised
during testing, and they avoid the difficulty of cre-
ating a test environment. They excel at helping
users discover and analyze errors, but they do little
to assist users in correcting errors and confirming
the validity of the correction. Users must still read
through all the rules to correct a mistake. The
tasks in firewall configuration involve locating as
well as correcting mistakes and both of them are
effort-consuming. Particularly, the latter one may
complicates the work due to the cascading effect
caused by any change on the rules (e.g. correcting
one rule may cause another mistake that involves
other rules.). All the activities can be represented
as a cycle shown in figure 1. The cycle consists
of three steps: Understanding the firewall behav-
ior, locating the mistakes, and correcting the mis-
takes, it always goes back to the first step in order
to check if the firewall behaves as expected. These

query engines did well on the first two steps while
ignoring the importance of the last step, leaving
the cycle incomplete, and the configuration work
still difficult.

Through our analysis, we are convinced that the
shortcomings outlined here make purely passive ap-
proaches impractical for addressing the firewall config-
uration problem. An effective and usable tool should
address the problem from the users’ perspective, taking
into account all interactive aspects of the configuration
tasks and avoiding the shortcomings we have described.

4 Our solution

4.1 Simulation

The fundamental activity in any debugging task is
the comparison of observed and expected behaviour.
One can think of a firewall rule set as a program writ-
ten in a relatively simple language. To diagnose its
errors, we can observe its behaviour; and to observe
its behaviour, we need to exercise the rules without
incurring the problems of the live scanning techniques
that we noted above. To do this, we decided to sim-
ulate network traffic flow, allowing us to observe the
emergent behaviour of multiple firewalls in a safe, con-
trolled and efficient manner. The simulation is based
on an abstracted network topology model that speci-
fies what network objects are involved and how they
are connected.

4.1.1 Representing the network topology

We represent the network topology as an undirected
graph T defined as follows:

Definition 3.1: T = ((G ∪N ∪H), C), where G is the
set of gateways, N is the set of networks, and H
is the set of hosts. C is the set of (E1, E2) where
E1, E2 ∈ G ∪ N ∪ H. Edges connect nodes as fol-
lows: a host can only be connected to one network;
a network can be connected to its parent network,
or to a gateway if it has no parent network; and a
gateway can only be connected to other gateways.

4.1.2 Network Entity Description

As a replacement for a real network testing environ-
ment, a network entity description is used as the input
information. To describe the information that is of in-
terest for a firewall manager, we provide the following
entity description which simply depicts the properties
and connectivity of a network as well as services that

are considered. The host, network and gateway corre-
spond to those in the previous section.

• Host: Hosts represent physical machines on the
network. Each host is assigned one IP address
and one network to which it attaches.

• Network: A network represents a set of hosts
that are physically connected together. It has a
network address and a netmask; all the hosts con-
necting to a network must have the same net-
work address as the network. A network can
have multiple subnetworks and one parent net-
work. Root networks are connected to each other
through gateways.

• Gateway: Gateways connect networks together.
Two hosts having different network addresses can
only communicate through a gateway. Firewall
rule sets are associated with gateways and govern
the exchange of packets between networks.

• Service: Service is simply the combination of pro-
tocol type and source/destination port numbers,
e.g., web service is the combination of TCP pro-
tocol and destination port number 80.

Each of these entities has a name property that is used
to identify it in a meaningful way.

4.1.3 Description Language

A Host is defined in the following way:

[hostName] = {

type: "[entityType]",

IPAddress: "[ipAddress]",

network: "[networkName]"

}

A Network is defined as:

[networkName] = {

type: "[entityType]",

NetAddress: "[networkAddress]",

NetMask: "[netMask]",

SuperNetwork: "[networkName]",

SubNetworks: "[networkName1,

networkName2, ...]",

Gateway: "[gatewayName]"

}

A Gateway is defined as:

[gatewayName] = {

type: "[entityType]",

gateways: "[gatewayName1,

gatewayName2, ...]",

networks: "[networkName1,

networkName2, ...]"

}

A Service is defined in the following way:

[serviceName] = {

type:"[entityType]",

protocol:"[protocolType]",

srcPortRange:"[lowerBound]

[-upperBound]",

destPortRange:"[lowerBound]

[-upperBound]"

}

where the entity-type is an enumeration variable which
contains “host”, “network”, “gateway”, and “service”.

4.1.4 Packet Generator

One challenge in designing a tractable simulation is to
test all the possible packets in the full spectrum of IP
addresses, port numbers, and protocol types. Assume,
for example, that we consider only two protocols.

Due to the form of IP packet header, the total num-
ber of possible packets is 297 – a completely intractable
number which is arrived by multiplying 64 bits of
source and destination IP addresses, 32 bits of source
and destination port numbers, and one additional bit
to distinguish between two protocols. To avoid this
combinatorial explosion, the packet generator in our
simulation selects packets based on the network topol-
ogy and firewall rules to be tested. The purpose of
this tool is to help identify which services are allowed
or blocked between nodes in the network. Therefore,
we need only generate packets that are relevant to our
security policy. The security policy is reflected in the
entity description where all the entities that are of in-
terest have been defined by the user. The packet gen-
erator will identify all unique pairs of entities from all
networks and hosts explicitly defined in the network
model, in the form of <network|host, network|host>,
then exclude self-loops and pairs within the same net-
work. In this way, we eliminate a large proportion of
packets from consideration.

Similarly, enumerating all the possible packets for a
single network is not tractable either because even a
16 bit network address space covers 216 addresses. To
deal with this, we can observe that real firewalls treat
many packets equivalently. For example, all the TCP
packets with different source and destination IP ad-
dresses/port numbers will be seen as equal by the rule
“drop TCP 0.0.0.0 from 0.0.0.0”. This implies that the
whole spectrum of possible IP addresses of a network

can be represented by a single IP address since other
ones will be treated equally by the firewall. So for
each network defined in the description, a randomly
selected IP with the defined network address will be
generated as the representative IP for that network.
Note that the random representative IP should not be
equal to any IP which has already been defined in that
network. In this way, we identify the <source IP, des-
tination IP>pair. We applied the same approach to
reduce the number of ports and protocols for each pair
of IP address. The packet generation algorithm runs
in O(n*(n+h)) where n is the number of networks and
h is the number of hosts defined in the description file.

We also considered that there might be IP addresses
or port numbers in the rule set that are not defined in
the description file. This may arise, for example, from
typos in the rule set. To ensure that those rules are
triggered, the packet generator also iterates through
all the firewall rules and generates extra packets for
rules that would not be triggered by packets generated
from the topology model. Section 6 illustrates how our
tool reflects typos in rules.

Note that the objective of the packet generator is not
to cover all possible configuration errors in the rule set
but to help the administrator identify inconsistencies
between firewall rules and security policy.

4.1.5 Packet Propagation

The simulation primarily propagates packets that have
been generated as discussed above. For each packet se-
lected by the packet generator, the simulator will find
out the source entity, either a host or a network, and de-
liver the packet to it as the first step of its path through
the network. A packet will start from the source en-
tity and stop either at a host/network, in which case it
has been delivered to the right target, or at a gateway
when it is blocked by a firewall. The process ends after
all the packets have been simulated.

4.2 Visualization

4.2.1 Result Collector

Our objective is to provide an intuitive summary of
simulated network behaviour, and we turn to visual-
ization for this purpose. The next step following the
simulation, then, is to collect the simulated results
in a way that aggregates the behaviour of individual
packets in an intuitive way. To produce a view that
is consistent with the view the user has of the sim-
ulated network, we chose to model data aggregation
on the network entity description. We presented the
result in the form of ”Service S is permitted/blocked

from the source entity A to destination entity B”. Note
that a successfully established connection between two
hosts comprises of traffic in both directions, therefore
to know if a service is permitted between two network
entities, packets flowing in both directions should be
tested. For example, a successful delivery of packet
“TCP from 115.120.30.5 20123 to 10.0.0.2 21” does
not imply that “machine A is granted FTP access to
our FTP server” because if the firewall rules blocks
the packets in the reversed direction (i.e. TCP from
10.0.0.2 21 to 115.120.30.5 20123), machine A still can
not use FTP service. In fact, only allowing one way
traffic and blocking the other way is a severe mistake
in the configuration. In order to detect this category
of mistakes, we simulate a packet in the reversed di-
rection of each packet that has been successfully de-
livered. If the reversed packet can be delivered, the
service is permitted, otherwise the service is not fully
permitted, that is to say, only the packets in one direc-
tion are allowed by the configuration. Allowed services
are identified by iterating over all the hosts and net-
works, collecting packets that are successfully delivered
and verifying the reversed packets can be delivered, if
the reversed packets are blocked, the service is identi-
fied as ”half-allowed”; all the blocked packets that are
collected at each gateway represent the blocked ser-
vices. The collector will extract the source/destination
IP address/port numbers and protocol type and trans-
late them into the symbolic forms used in the network
entity description.

4.2.2 Allowed/Blocked view

There are two strategies when configuring a firewall.
In one, a default rule blocks everything and other rules
specifically allow those that you allow. In the other,
a default rule allows everything and other rules block
potentially malicious access. Security experts recom-
mend the former for better defense against unexpected
access attempts. The strategy eases the work of config-
uring to some extent, but as the security policy needs
and complexity evolve, it is hard to keep all the rules
conforming to a single strategy. Modern firewall rule
sets normally use the combination of block and allow
rules to achieve the desired policy. For this reason, we
decided to show allowed services and blocked services
in two separate views. Users can inspect both views
based on the aspect of behavior they want to know.

4.2.3 Drawing the graph

One of the primary objectives is to present the simula-
tion result in a way that is easy to understand. To that

end, we based the design of our views on the following
goals:

• The picture must contain enough information for
the system administrator to understand the global
topology and connectivity of the network.

• The picture should reflect the behavior of each fire-
wall in a way that is close to the security policy in
the user’s mind. In other words, the picture should
require as little mental translation as possible.

• The picture should be recognizable. Repeated
simulations of a given network configuration
should produce the same picture each time, and
small changes in configuration should produce cor-
respondingly small changes in the visual represen-
tation.

• Visual cleanness and tidiness is a must because the
usability of the tool depends on this point a lot.

To satisfy these criteria, we decided to draw the net-
work as an undirected graph with the gateways, net-
works and hosts as the nodes. The network topology is
based on the network entity description file, meaning
that only those entities defined in the file will be vi-
sualized. Directed edges (arrows) are used to connect
pairs of hosts and/or networks. The meaning of this
connection is as follows:

• Two line styles will be used to differentiate the
allowed/half-allowed services we discussed in Sec-
tion 4.2.1. Solid lines represent fully allowed ser-
vices and dashed lines represent half-allowed ser-
vices.

• When the end point is a host, it means that a cer-
tain service is allowed/blocked from/to this host.

• When the end point is a network, it means that a
certain service is allowed/blocked from/to all the
hosts that are not explicitly defined on this net-
work.

Arrows are coloured to represent different types of
services. In the allowed view, unexpected arrows in
the picture indicate that the firewall rules have allowed
packets that should be discarded according to the se-
curity policy. Conversely, the absence of an expected
arrow indicates that a rule has incorrectly blocked ac-
cess. In the example shown in Figure 2, web service
is granted from localNet to webServer given that the
colour of the arrow denotes TCP protocol on port 80.

Recall that we also generate candidate packets based
on the undefined IP addresses and services found in

Figure 2. Use of Arrow

Figure 3. Grouped structure

the firewall rule sets, therefore this information will
be reflected in the picture as well. One extra color
will be used to denote all the undefined services; each
undefined IP Address will create an extra node on the
picture, each node will be drawn near the network to
which the IP address of the node belongs.

As the complexity increases, the picture will fill with
crossed lines, boxes will be surrounded by arrow heads,
nodes and edges may be forced to overlap, and so on.
We have adopted a number of techniques to help reduce
the clutter while retaining a holistic network view of
the simulation results.

• Grouped structure. In our initial design, hosts
were connected by edges pointing to the networks
they attach to; subnetworks were connected by
edges to their parent networks; and the root net-
works that did not have a parent network were
connected to the gateways. The picture turned out
to be messy as the number of network entities in-
creased because of the large number of edges. We
therefore adopted the grouped structure shown in
Figure 3.

As in the picture, hosts are located inside the net-
works they attach to, and subnetworks are located
inside their parent networks. Only root networks
are connected to gateways. The networks that
have child entities can be folded to make their de-
scendants invisible. In this case, the folded node
represents itself and all of its descendant entities.
Consequently, the same type of arrows between
one of the other entities and descendants of the
folded network will now be combined. After the
folded network is expanded, the arrows depicting
service from the descendants entities will be re-

7

stored. The fold/expand mechanism gives users
the ability to examine the simulation result at
different levels on the tree structure of the net-
work while at the same time significantly reducing
the line number if there are many nested network
structures in the topology.

• Service filters. Numerous services are now being
used in network applications, and firewall rule sets
often have to deal with a variety of services. Al-
though we evenly divide the color space to assign
colors to services, too many service arrows between
the same pair of entities might also make the in-
spection difficult. We therefore introduced service
filters that allow users to reduce visual clutter by
filtering out services that they are not currently
evaluating. An effective technique is to use the
service filters to check services one at a time, fil-
tering out the ones that are found to be error-free.
This results in a display of only those services re-
flecting configuration errors.

• Host/Network filters. These filters are completely
analogous to service filters. Users can interactively
remove portions of the network from the diagram
in order to focus more clearly on specific parts.

4.3 Interaction

We have designed the views to be interactive with
the goals of reducing the mental effort required to cor-
rect configuration errors, and improving the accuracy
of the corrections. After identifying suspicious arrows
in the picture, users will want to locate the underlying
rule set errors and quickly make appropriate changes
with as little effort as possible.

In our visualization scheme, an arrow in the picture
corresponds to packets that have been delivered from
the source to the destination in the simulation. As
per the discussion in Section 2, we believe that pre-
senting only the executed rule (the first one that is
matched) is not always enough for the administrator
to understand the outcome. We therefore identify all
the rules that could be matched by an arrow. When
a packet arrives at a gateway and is being delivered
to the next hop, we record all the possible matched
rules. A click on an arrow will highlight those rules
that could be matched by the packets associated with
this arrow. Since a firewall will restrict packets from
both directions, the highlighted rules will fall into two
categories too, examples in Section 6 will show how we
highlight the rules for restricting packets in both direc-
tions. The rules are shown in an edit panel that allows
in-place editing to correct them. Modifications can be

immediately verified by re-running the simulation and
visually observing the impact.

5 Implementation

The prototype implementation of the tool was built
using Java version 1.4.2. Two external packages were
used in the implementation.

• Rhino: Rhino is a Java implementation of
JavaScript version 1.5. It was created by the
Mozilla project (www.mozilla.org/rhino) in antic-
ipation of a Java based version of the Mozilla
browser (an idea that was abandoned only af-
ter the completion of Rhino). It provides access
methods both from Java to JavaScript and vice
versa. Therefore, Java code can be “scripted” in
the Rhino shell, and JavaScript can be embedded
into Java code where JavaScript objects can be
directly referenced in Java code. We utilized this
package to implement the description language
parser so that the description file conforms with
the JavaScript syntax.

• JGraph: JGraph is an open source graph draw-
ing and layout component that is purely written
in Java (www.jgraph.org). It provides the under-
lying data model as well as visual presentation of
a graph. It also takes care of some basic inter-
action with the graph such as selecting, dragging
and resizing graph nodes. The layout package in
JGraph provides several well-known graph layout
algorithms.

We used the JGraph package as the basis for our
visualization module, though non-trivial extension
and customization was necessary to fit our needs.
For example, the presentation of a vertex was ex-
tended to draw a grouped structure. Other major
changes include extending the layout algorithm to
make it support nested layout and the way that
JGraph handles node selection.

6 Evaluation

To evaluate our application, we devised a realistic
network topology that is typical of modern firewall con-
figuration (see Figure 4). We classify the mistakes in
rule set into three classes, each of which represents one
type of mistake. We will describe the scenario and con-
figuration errors first and then present how our tool
reflects each class of errors.

The network topology of our example is shown in
Figure 4. Two firewall rule sets are on the gateways

Figure 4. Network topology

Figure 5. Picture of typo mistake

named internal and external respectively. The security
policy is as follows:

• Web services are allowed from anywhere to the
web server.

• All machines on campus network can access the
miscellaneous server using Telnet.

• Allow trusted hosts to access internal host control

using SSH.

• Block all traffic from malicious hosts.

6.1 Typos

As we mentioned in Section 1, these errors are not
hard to understand but easy to have. These errors will
grant unwanted access so they are also critical. In this
example, the first rule on gateway external specified the
address of 111.222.1.2 as the FTP server address which
is actually 111.222.1.3. In our simulation, a packet will
be generated if there is an unrecognized IP address in
the rule set, so the incorrect address 111.222.1.2 repre-
sents some host within the DMZ. The picture is shown
in Figure 5 According to the security policy, we expect
that the arrow starts from the host trusted pointing to
the miscServer whereas now it points to an extra node

Figure 6. Highlighted rules of typo mistake

sitting in the DMZ box. Clicking on that arrow will
highlight all the rules that are related as in Figure 6.
By examining the marked rules, we can easily discover
that the mistake is a simple typo.

6.2 Overlap Error

Two rules overlap when each one of them matches
some of the packets that match the other rule. When
dealing with the packets that could match both rules,
the first matched one in order decides the action. This
is often trickier to discover than other types of mis-
takes, especially when dealing with large or multiple
rule sets. In the picture in figure 7, the first thing we
see is that all the arrows are dashed lines. As we men-
tioned in section 4.2.1, this implies that packets of web
service are allowed in only one way. To correct this, we
simply add the rule to allow TCP packets from web
server to everywhere else. The corrected picture then
shows the overlap error in figure 8. We should block
all the TCP packets from the host malicious, hence the
arrow from host malicious to host webserver is not ex-
pected. The highlighted rules are shown in Figure 9.
The problem is caused by the order of the second rule
and the third rule. The second rule opens the web
service to the entire Internet but the subsequent rule
tries to block packets from a malicious host. The cor-
rect order should be the reversed sequence of these two
rules.

6.3 Masking error

A rule will not change the security policy if a preced-
ing rule matches all the packets that match the masked

Figure 7. Picture of overlap mistake

Figure 8. Picture of overlap mistake

Figure 9. Highlighted rules of overlap mistake

rule, we call it masked because its effects are masked.
This type of mistake might be caused by adding rules
to an existing rule set without realizing that the order
makes an existing rule mask newly added ones.

In the example, we expect that all the machines from
campusNet can use Telnet to access our internal host
control. However, from inspection of the picture in
Figure 10, we find that only the host trusted is allowed
to do so. We can locate the mistake by clicking on
the arrow. The highlighted rules in Figure 11 and in
Figure 12 show the matched rules on two rule sets re-
spectively. The rule on gateway external only permits
SSH connections from the host trusted so that it masks
the effect of the first rule on gateway internal that tries
to permit SSH from network campusNet.

6.4 Results

Our tool reflected all three types of errors in a way
that is easy to spot. All the errors can be made di-
rectly within the tool and correctness can be verified
immediately after modification in the same way.

Performance: For the example network described
here, the simulation takes less than 2 seconds to com-
plete on a standard PC with a 1.8 GHz CPU and 256
MB RAM.

7 Conclusions and Future Work

Even with contemporary tools, firewall configura-
tion continues to be a difficult task. We have described
a number of difficult issues, and proposed an interde-

Figure 10. Picture of mask mistake

Figure 11. Rules of mask mistake on gateway
external

Figure 12. Rules of mask mistake on gateway
internal

pendent set of techniques that we believe offer a good
solution to some of the difficult problems. These tech-
niques have been implemented in a prototype tool that
involves administrators in an interactive exploration
of firewall behaviour that closely reflects the network
models and security policies that define how they think
about the network. A simulation is used to discern
the emergent behaviour of multiple, interacting fire-
wall rule sets, and the results are displayed in a way
that visually resembles the network topology. The vi-
sual display is also linked back to the underlying rules
to reflect the cyclic process of firewall configuration.
We believe that this interaction style will reduce the
mental effort needed to debug a complex rule set. We
have conducted an analysis and informal evaluation to
illustrate how the prototype tool exposes common con-
figuration mistakes. Based on this evaluation, we be-
lieve this to be a promising approach that has met our
initial design objectives.

Future work will include:

• A more usable network entity description builder
is needed for the first stage of simulation. The
description language we designed here is time-
consuming and not easy to specify. We envision
that an intuitive GUI-based interface supporting
drag-and-drop actions will go a long way toward
simplifying the task.

• For now, we aimed only at checking the con-
formance between security policy and rule sets
whereas the security quality of configuration is not
considered. That is to say, if the security policy is
poor, our tool will not help. A module of security
advisor which will make helpful suggestions on the
configuration in terms of security can be added to
our tool. Its function is similar to consulting an
expert about security tips, e.g., what ports should
be considered.

• We will carry out a more in-depth and thorough
evaluation to evaluate our tool further. Our goal
is to cope with scenarios where large scale network

topology and firewall rule sets are involved so that
more complex cases will be tested. Other system-
atic and formal ways of usability testing will also
be taken into consideration.

References

[1] Check point visual policy editor data sheet. Avail-
able on: http://www.checkpoint.com/products/

downloads/vpe\ datasheet.pdf.
[2] E. Al-Shaer and H. Hamed. Firewall policy advi-

sor for anomaly detection and rule editing. In Proc.
IEEE/IFIP 8th Int. Symp. Integrated Network Man-
agement (IM 2003), pages 17–30, Mar. 2003.

[3] J. P. Anderson, S. Brand, L. Gong, T. Haigh, S. Lip-
ner, T. Lunt, R. Nelson, W. Neugent, H. Orman,
M. Ranum, R. Schell, and E. Spafford. Firewalls: An
expert roundtable. IEEE Software, 14(5):60–66, Oct.
1997.

[4] D. Eppstein and S. Muthukrishnan. Internet packet
filter management and rectangle geometry. In Proceed-
ings of 12th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 827–835, Jan. 2001.

[5] P. Eronen and J. Zitting. An expert system for
analyzing firewall rules. In Proceedings of the 6th
Nordic Workshop on Secure IT Systems (NordSec
2001), pages 100–107, Copenhagen, Denmark, Nov.
2001.

[6] A. Hari, S. Suri, and G. Parulkar. Detecting and re-
solving packet filter conflicts. In Proceedings of IEEE
Infocom, volume 3, pages 1203–1212, Tel Aviv, Israel,
Mar. 2000.

[7] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall
analysis engine. IEEE Symposium on Security and
Privacy, page 177, May 2000.

[8] R. Oppliger. Internet security: firewalls and be-
yond. Communications of the ACM, 40(5):92–102,
May 1997.

[9] J. Wack, K. Cutler, and J. Pole. Guidelines on firewalls
and firewall policy. NIST Recommendations, SP 800-
41, Jan. 2002.

[10] A. Wool. A quantitative study of firewall configuration
errors. IEEE Computer, 37(6):62–67, 2004.

