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Abstract

In this paper, we review five heuristic strategies

for handling context-sensitive features in super-

vised machine learning from examples. We dis-

cuss two methods for recovering lost (implicit)

contextual information. We mention some evi-

dence that hybrid strategies can have a synergetic

effect. We then show how the work of several

machine learning researchers fits into this frame-

work. While we do not claim that these strategies

exhaust the possibilities, it appears that the

framework includes all of the techniques that can

be found in the published literature on context-

sensitive learning.

1 Introduction

This paper is concerned with the management of context

for supervised machine learning from examples. We

assume the standard machine learning framework, where

examples are represented as vectors in a multidimensional

feature space (also known as the attribute-value represen-

tation). We assume that a teacher has partitioned a set of

training examples into a finite set of classes. It is the task

of the machine learning system to induce a model for pre-

dicting the class of an example from its features.

In many learning tasks, we may distinguish three different

types of features: primary, contextual, and irrelevant fea-

tures (Turney, 1993a, 1993b). Primary features are useful

for classification when considered in isolation, without

regard for the other features. Contextual features are not

useful in isolation, but can be useful when combined with

other features. Irrelevant features are not useful for classi-

fication, either when considered alone or when combined

with other features.

We believe that primary features are often context-sensi-

tive. That is, they may be useful for classification when

considered in isolation, but the learning algorithm may

perform even better when we take the contextual features

into account. This paper is a survey of strategies for taking

contextual features into account. The paper is motivated

by the belief that contextual features are pervasive. In sup-

port of this claim, Table 1 lists some of the examples of

contextual features that have been examined in the

machine learning literature. Many standard machine learn-

ing datasets (Murphy & Aha, 1996) contain contextual

features, although this is rarely (explicitly) exploited. For

example, in medical diagnosis problems, the patient’s gen-

der, age, and weight are often available. These features are

contextual, since they (typically) do not influence the diag-

nosis when they are considered in isolation.

In Section 2, we list five heuristic strategies for managing

context. We often neglect context, because of its very

ubiquity; however, it is sometimes possible to recover hid-

den (implicit, missing) contextual information. Section 3

discusses two techniques (clustering and time sequence)

for exposing hidden context. Section 4 reviews evidence

that hybrid strategies can perform better than the sum of

the component strategies (synergy). Section 5 briefly sur-

veys the literature on context-sensitive learning and shows

how the work of various researchers fits into the frame-

work we present here. We conclude in Section 6.



2 Strategies for Managing Context

Figure 1 illustrates our intuition about a common type of

context-sensitivity. Let us consider a simple example:

Suppose we are attempting to distinguish healthy people

(class A) from sick people (class B), using an oral ther-

mometer. Context 1 consists of temperature measurements

made on people in the morning, after a good sleep. Con-

text 2 consists of temperature measurements made on peo-

ple after heavy exercise. Sick people tend to have higher

temperatures than healthy people, but exercise also causes

higher temperature. When the two contexts are considered

separately, diagnosis is relatively simple. If we mix the

contexts together, correct diagnosis becomes more diffi-

cult.

Katz et al. (1990) list four strategies for using contextual

information when classifying. In earlier work (Turney,

1993a, 1993b), we named these strategies contextual nor-

Table 1: Some examples from the machine learning literature.

Task
Primary

Features

Contextual

Features
Reference

image

classification

local

properties of

the images

lighting

conditions

(bright, dark)

Katz et al.

(1990)

speech

recognition

sound

spectrum

information

speaker’s

accent

(American

versus British)

Pratt et al.

(1991)

gas turbine engine

diagnosis

thrust,

temperature,

pressure

weather

conditions

(temperature,

humidity)

Turney &

Halasz (1993),

Turney

(1993a, 1993b)

speech

recognition

sound

spectrum

information

speaker’s

identity and

gender

Turney

(1993a,

1993b), Kubat

(1996)

hepatitis

prognosis

medical data patient’s age Turney (1993b)

speech

recognition

sound

spectrum

information

neighbouring

phonemes

Watrous (1991)

speech

recognition

sound

spectrum

information

speaker’s

identity

Watrous (1993)

heart disease

diagnosis

electrocar-

diogram data

patient’s

identity

Watrous (1995)

tonal music

harmonization

meter, tactus,

local key

to be

discovered by

the learner

Widmer (1996)

malization, contextual expansion, contextual classifier

selection, and contextual classification adjustment.

Strategy 1: Contextual normalization: Contextual fea-

tures can be used to normalize context-sensitive primary

features, prior to classification. The intent is to process

context-sensitive features in a way that reduces their sensi-

tivity to context. For example, we may normalize each fea-

ture by subtracting the mean and dividing by the standard

deviation, where the mean and deviation are calculated

separately for each different context. See Figure 2.

Strategy 2: Contextual expansion: A feature space com-

posed of primary features can be expanded with contextual

features. The contextual features can be treated by the

classifier in the same manner as the primary features. See

Figure 3.

Strategy 3: Contextual classifier selection: Classification

can proceed in two steps: First select a specialized classi-

fier from a set of classifiers, based on the contextual fea-

tures. Then apply the specialized classifier to the primary

features. See Figure 4.

Strategy 4: Contextual classification adjustment: The two

steps in contextual classifier selection can be reversed:

First classify, using only the primary features. Then make

A

A

B

B

A BA & B

Figure 1. The result of combining samples from different contexts.
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an adjustment to the classification, based on the contextual

features. The first step (classification using primary fea-

tures alone) may be done by either a single classifier or

multiple classifiers. For example, we might combine mul-

tiple specialized classifiers, each trained in a different con-

text. See Figure 5.

In our previous work (Turney, 1993a, 1993b), we dis-

cussed a strategy that was not included in the list of four

strategies given by Katz et al. (1990). We called this strat-

egy contextual weighting.

Strategy 5: Contextual weighting: The contextual features

can be used to weight the primary features, prior to classi-

fication. The intent of weighting is to assign more impor-

tance to features that, in a given context, are more useful

for classification. Contextual selection of features (not to

be confused with contextual selection of classifiers) may

be viewed as an extreme form of contextual weighting: the

selected features are considered important and the remain-

ing features are ignored. See Figure 6.

B

Figure 2. Contextual normalization: The result of combining

normalized samples from different contexts.
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3 Implicit Context

So far, we have been concerned with data in which contex-

tual features are explicitly represented. Unfortunately,

contextual information is often omitted from a dataset.

Because we tend to take context for granted, we neglect to

record the context of an observation. Fortunately, it is

sometimes possible to recover contextual information. In

this section, we consider two methods for recovering miss-

ing (hidden, implicit) contextual features. First, unsuper-

vised clustering algorithms may be able to recover lost

context (Aha, 1989; Aha & Goldstone, 1992; Domingos,

1996). Second, the temporal sequence of the instances

may imply contextual information (Kubat, 1989; Widmer

& Kubat, 1992, 1993, 1996).

A B

A B

Figure 3. Contextual expansion: The result of combining expanded

samples from different contexts.
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We believe that clusters that are generated by unsuper-

vised clustering algorithms typically capture shared con-

text. That is, if two cases are assigned to the same cluster,

then they likely share similar contexts. Therefore, if we

cluster cases by their primary features, then members of

the same cluster will tend to belong to the same class and

the same context. More precisely, the likelihood that they

belong to the same class and context is greater than the

likelihood for the samples from the general population.

If we are given a dataset where there are only primary fea-

tures, because the importance of contextual features was

overlooked when the data were collected, we can use a

clustering algorithm to recreate the missing contextual

features. For example, we can label each case according to

the cluster in which it belongs, and then we can introduce

a new contextual feature of the form Cluster = Label. An

alternative approach would be to integrate a form of clus-

Figure 4. Contextual classifier selection: Different classifiers are

used in different contexts.
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tering with a concept learning algorithm, instead of sepa-

rating the clustering process from the classification

process. This approach has been used by several research-

ers, with some success (Aha, 1989; Aha & Goldstone,

1992; Domingos, 1996).
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A feature of the form Cluster = Label might not be purely

contextual, since clusters may be predictive of the class.

Some of the success of approaches that combine clustering

and classification may be due to this. Further research is

required to determine whether clusters tend to be contex-

tual or primary.

Another way to recover lost contextual information is to

use temporal information, if it is available. We believe that

events that occur close together in time tend to share con-

text. If the records in a database contain a field for the

date, this information might be used to expose hidden con-

textual information. We could introduce a new feature of

the form Time = Date. Depending on what strategy we use

for handling context, it may be useful to convert the time

into a discrete feature.

In incremental learning, the order in which examples are

encountered by the learner may correspond to the timing

of the examples. In batch learning, the order of the exam-

ples in the file may correspond to the timing. We can intro-

duce a new feature of the form Order = Number. Again, it

may be useful to discretize this feature.

We believe that the FLORA algorithm (an incremental

algorithm) is implicitly using the order of the examples to

recover lost contextual information (Kubat, 1989; Widmer

& Kubat, 1992, 1993, 1996). The FLORA algorithm is

Figure 6. Contextual weighting: The impact of weighting on

classification.
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essentially an instance of the contextual classifier selection

strategy (Strategy 3 in Section 2). The context is used to

select the appropriate classifier from a set of possible clas-

sifiers. The interesting innovation is that the context is

implied in the order of presentation of the examples.

4 Hybrid Strategies

Various combinations of the above strategies are possible.

For example, we experimented with all eight possible

combinations of three of the strategies (contextual normal-

ization, contextual expansion, and contextual weighting)

in two different domains, vowel recognition and hepatitis

prognosis (Turney 1993a, 1993b).

In the vowel recognition task, the accuracy of a nearest-

neighbour algorithm with no mechanism for handling con-

text was 56%. With contextual normalization, contextual

expansion, and contextual weighting, the accuracy of the

nearest-neighbour algorithm was 66%. The sum of the

improvement for the three strategies used separately was

3%, but the improvement for the three strategies together

was 10% (Turney, 1993a, 1993b). There is a statistically

significant synergetic effect in this domain.

In the hepatitis prognosis task, the accuracy of a nearest-

neighbour algorithm with no mechanism for handling con-

text was 71%. With contextual normalization, contextual

expansion, and contextual weighting, the accuracy of the

nearest-neighbour algorithm was 84%. The sum of the

improvement for the three strategies used separately was

12%, but the improvement for the three strategies together

was 13% (Turney, 1993b). The synergetic effect is not sta-

tistically significant in this domain.

One area for future research is to discover the circum-

stances under which there will be a synergy when strate-

gies are combined. Another area for future research is to

extend the experiments to all 32 possible combinations of

the five strategies.

5 Applying the Framework to the Research

Literature

The preceding sections of this paper have sketched a

framework for categorizing strategies for learning in con-

text-sensitive domains. We will now apply this scheme to

a sample of the research literature. Table 2 shows how

some of the papers fit into our structure. All of the papers

we have read so far appear to be consistent with the frame-

work.



In Table 2, context management refers to the five heuris-

tics for managing context-sensitive features that are dis-

cussed in Section 2; context recovery refers to the method

for recovering lost contextual features, as discussed in

Section 3. Explicit means that the contextual features are

explicitly present in the datasets. Implicit means that the

contextual features were not recorded in the data, so the

learning algorithm must attempt to recover lost contextual

information. The implicit contextual information may be

recovered either by clustering the data or exploiting the

temporal sequence of the examples.

Table 2: A classification of some of the literature on learning in context-

sensitive domains.

Reference

Context

Management

(Section 2)

Context Recovery

(Section 3)

Aha (1989) Weighting Implicit —

clustering

Aha and Goldstone

(1992)

Weighting Implicit —

clustering

Bergadano et al. (1992) Adjustment Implicit —

clustering

Domingos (1996) Weighting Implicit —

clustering

Katz et al. (1990) Selection Explicit

Kubat (1996) Selection,

Adjustment

Explicit

Michalski (1987, 1989,

1990)

Adjustment Implicit —

clustering

Pratt et al. (1991) Adjustment Implicit —

clustering

Turney (1993a, 1993b) Normalization,

Expansion,

Weighting

Explicit

Turney and Halasz

(1993)

Normalization Explicit

Watrous (1991) Adjustment Explicit

Watrous (1993) Normalization Explicit

Watrous and Towell

(1995)

Adjustment Explicit

Widmer and Kubat

(1992, 1993, 1996)

Selection Implicit —

temporal sequence

Widmer (1996) Selection Explicit

6 Conclusion

This paper briefly surveyed the literature on machine

learning in context-sensitive domains. We found that there

are five basic strategies for managing context-sensitive

features and two strategies for recovering lost context.

Combining strategies appears to be beneficial.

A survey such as this is the first step towards a scientific

treatment of context-sensitive learning. Many open ques-

tions are raised: Is the list of strategies complete? Can the

strategies be formally justified? What is the explanation of

the synergy effect? These are topics for further research.
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