
Publisher’s version / Version de l'éditeur:

Implantation de la référence OO jDREW de RuleML, 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

The OO jDrew Reference Implementation of RuleML
Ball, M.; Boley, Harold; Hirtle, D.; Mei, J.; Spencer, Bruce

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=ba72a5af-1e40-442e-8915-054800389b8d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ba72a5af-1e40-442e-8915-054800389b8d

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

The OO jDrew Reference Implementation of

RuleML *

Ball, M., Boley, H., Hirtle, D., Mei, J., and Spencer, B.
November 2005

* published in the RuleML 2005 Conference Proceedings. November 10-

12, 2005. Galway, Ireland. Springer LNCS 3791. pp. 218-223. NRC 48284.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

The OO jDREW

Reference Implementation of RuleML

Marcel Ball1, Harold Boley2, David Hirtle1,2, Jing Mei1,2, Bruce Spencer2

1 Faculty of Computer Science
University of New Brunswick

Fredericton, NB, E3B 5A3, Canada
{maball, david.hirtle, jingmei.may}@gmail.com
2Institute for Information Technology - e-Business

National Research Council of Canada
Fredericton, NB, E3B 9W4, Canada

{Harold.Boley, David.Hirtle, Jing.Mei, Brunce.Spencer}@nrc.gc.ca

Abstract. This paper presents the open source reference implementa-
tion of RuleML based on modular XML Schema definitions and bidirec-
tional OO jDREW interpreters written in Java. For the family of RuleML
sublanguages, schema modularization and RDF rules are discussed. The
central bidirectional interpreters are introduced via jDREW principles,
and explained w.r.t. OO jDREW slots, types, OIDs, and extensions.

1 Introduction

The syntax of RuleML derivation rules has been defined by XML Schema defini-
tions. The model-theoretic semantics of several RuleML sublanguages (including
Datalog, Hornlog, and Folog) is defined in the classical way; for sublanguages
with negation-as-failure, well-founded models have been proposed. We have im-
plemented the operational semantics of Derivation RuleML using XSLT trans-
lators and the bidirectional interpreter (the OO jDREW rule engine) described
in this paper. This reference implementation is available open source via the
RuleML and jDREW websites.

2 Modular Schemas for a Family of RuleML Sublanguages

The top-level of the current family of RuleML sublanguages shows the major dis-
tinction between Derivation Rules, including Hornlog above Datalog, and Action
Rules, including Production Rules. We focus here on various expressive classes
of Derivation Rules and their XML Schema Definitions (XSDs) as described in
the Modularization document. The most recent (public) schema specification of
RuleML is always available at http://www.ruleml.org/spec.

2.1 Schema Modularization

We employ modular XSDs, using a content model-based approach to take ad-
vantage of inheritance between schemas. Each expressive class syntactically dis-
tinguishable via an XSD (such as Datalog vs. Hornlog) can thus be addressed
by the URI of its XSD. This permits receivers of a rulebase to validate if it con-
forms to the specified expressive class, before applying any class-specific tools
(such as a Datalog vs. Hornlog interpreter). Moreover, a syntactic class is asso-
ciated with a semantic class (such as Datalog vs. Hornlog with a function-free
vs. function-containing Herbrand model). The relationships between these ele-
ments of the model are either aggregation, e.g. “Datalog is part of Hornlog”, or
generalization, e.g. “Bindatalog is a Datalog”.

From an implementation perspective, elementary non-standalone modules
contain only element and/or attribute definitions and are not intended to be
used directly for validation. They may, however, be used to create new document
types by others wishing to “borrow” certain elements of RuleML. The actual
sublanguages, on the other hand, are schema drivers composed in whole or in
part of these modules or derived entirely from other schema drivers.

2.2 RDF Rules as Anchored, Slotted Datalog with Blank Nodes

As an important sublanguage example, the definition of RDF Rules can be in-
troduced in the following steps:

– Datalog is a language corresponding to relational databases (ground facts
without complex domains or “constructors”) augmented by views (possibly
recursive rules).

– Slots permit non-positional arguments. RuleML’s user-level metarole ‘slot’
takes a name-filler pair, accommodating RDF properties.

– Anchors provide object identity via webizing through URIs. Such “URI
grounding” is available in RuleML via dual attributes ‘wlab’ and ‘wref’,
corresponding to RDF’s ‘about’ and ‘resource’.

– Blank Nodes are local aliases for existing individuals without need for global
names. In RuleML, the F-logic/Flora-2 Skolem-constant approach [1] is used
to notate, generate, and refer to Blank Nodes.

Illustrating an RDF-like Business Rule 1:

<Implies>

<body>

<And>

<Atom>

<oid><Var>x</Var></oid>

<Rel>product</Rel>

<slot><Ind wref=":price"/><Var>y</Var></slot>

<slot><Ind wref=":weight"/><Var>z</Var></slot>

</Atom>

<Atom>

<Rel wref="swrlb:greaterThan"/><Var>y</Var><Data>200</Data>

</Atom>

<Atom>

<Rel wref="swrlb:lessThan"/><Var>z</Var><Data>50</Data>

</Atom>

</And>

</body>

<head>

<Atom>

<oid><Var>x</Var></oid>

<Rel>product</Rel>

<slot><Ind wref=":shipping"/><Data>0</Data></slot>

</Atom>

</head>

</Implies>

3 Bidirectional Interpreters in Java

As part of the implementation of RuleML, a system of bidirectional interpreters,
was created in Java. In particular, the OO jDREW reasoning engine [3] con-
tains two modes: a Bottom-Up (forward chaining) version, and a goal driven
top-down (backward chaining) version that works in a fashion similar to most
Prolog systems. Demo applications (interfaced through Java Web Start) are
available at http://www.jdrew.org/oojdrew/demo.html, and the source has been
made available for download. A Roadmap for Open Source OO jDREW De-
velopment has recently been outlined (http://mail.jdrew.org/pipermail/jdrew-
all/2005-June/000001.html). Principles, specifics, and extensions of the features
available in OO jDREW are detailed below.

3.1 jDREW Principles

The jDREW toolbox approach [2] provides the flexibility to quickly cope with
changes to the implementation of the evolving RuleML standard. There are util-
ities in jDREW for various tasks: reading files of RuleML statements into the
internal clause data structure, storing and manipulating clauses, unification of
clauses according to the positions of the selected literals, a basic resolution en-
gine, clause to clause subsumption and clause to clause-list subsumption, choice
point managers, priority queues for various reasoning tasks, and readable top-
level procedures.

Much of the flow of control is oriented around iterators, objects that maintain
the state of a partially completed computation. Thus you pay as you go when you
want the engine to perform the next step. The advantages of this architecture
are its consistency and efficiency. There is a common interface for many different
reasoning tasks, and there are few additional data structures introduced for

storing intermediate results, other than those required by the abstract reasoning
procedure. For instance, in the bottom-up system, solutions are generated one-
at-a-time, so asking for the next solution may cause the following steps: An
iterator will be asked to select the next clause in the so-called ‘new results’ list
that matches eligibility requirements (like not being already subsumed).

3.2 OO jDREW Slots

During the creation of the internal structures, the OO jDREW terms represent-
ing atoms and complex terms are normalized, producing the following order for
the parameters: oid (object identifier), positional parameters (in their original
order), the positional rest term, slotted parameters (in the encounter order), and
finally the slotted rest term. Since the ordering of slots within RuleML atoms
and complex terms does not carry information, any order can be imposed. In
OO jDREW, the slots are ordered based upon the sequence in which they are
initially encountered to permit the incremental addition of slots without any
reordering.

By using such a normalized form we are able to implement an efficient uni-
fication algorithm that has time complexity O(m + n) (where m and n are the
numbers of parameters), instead of O(m * n). In our algorithm we scan the two
lists of parameters – matching up roles (and positions in the case of positional
parameters) – and unify those parameters. If a role is present in one term but not
in the other then the unmatched role is added to a list of rest terms in case the
other has an appropriate rest term (otherwise unification fails). Such a collection
of rest terms is used to dynamically generate a Plex (RuleML’s generalization
of a list) to be assigned to the corresponding rest parameter.

3.3 OO jDREW Types

OO jDREW includes an order-sorted type system as a core component. This type
system allows the user to specify a partial order for a set of classes in RDFS via
their (multiple) superclasses, allowing for the reuse of lightweight taxonomies of
the Semantic Web. Currently, the system only models the taxonomic relation-
ships between the classes, and cannot model properties with their domain and
range restrictions. For example, the current system can model that ‘Car’ is a
‘Motor Vehicle’, but cannot model that a car must have a make, model, year,
etc.

By building an order-sorted type system into OO jDREW we are able to
restrict the search space to only those clauses that have the appropriate types
specified for their parameters, leading to a faster and more robust system than
one where types are reduced to unary predicate calls in the body.

Extensions to the type system are being considered that would expand its
modeling ability. In particular, the user could define a signature using RDFS
properties to specify that certain slots must be present for a typing to be valid.
We would then be able to prescribe that ‘Car’ has slots for at least make, model,
year, which is not possible in the current system.

3.4 OO jDREW OIDs

The current implementation of OO jDREW, version 0.88, has a preliminary
implementation of object identifiers (OIDs). Currently, OIDs are only supported
in an atomic formula (<Atom> in RuleML), either as a fact or as part of a
rule (<Implies> in RuleML). In this version only symbolic names are allowed as
OIDs. The URI-valued wref and wlab attributes, which are part of the RuleML
specification, are currently not supported; this is primarily due to W3C issues
with the normalization of URIs, creating difficulties in determining what URIs
should be considered to be equivalent.

The open source roadmap for OO jDREW includes plans to extend support
for OIDs beyond their current level. It is envisioned that by the release of version
0.89, OIDs will be supported on levels other than atoms, such as for connectives
and performatives. Additionally, wlab and wref should be supported with a pre-
liminary URI normalization system, possibly implemented in OO RuleML [4]
itself.

3.5 OO jDREW Extensions

Negation-as-failure (Naf) has first been implemented in OO jDREW TD, and
recently introduced into OO jDREW BU for stratified programs. In bottom-up
mode, Naf attempts to look up its argument atom via a unifying fact (when no
other rule is applicable). If this look-up succeeds, hence the Naf fails, then this
rule will be deleted from the given list, else the rule will be partially evaluated
into one without Naf.

Equivalence classes have been implemented in OO jDREW BU for the sub-
language datalogeq (Datalog with Equality). For equality ground facts, a newly-
built data structure called EqualTable is used to map all equal individuals to
one equivalence class. For each equivalence class, we append a fresh symbol to
the original OO jDREW SymbolTable, and all equal individuals are redirected
to this new symbol. That is, the process of unification and resolution will deal
with this new symbol, representing the equivalence class as a whole.

Illustrating Naf and Equal with a Datalog-like Business Rule 2:

<Implies>

<head>

<Atom>

<Rel>discount</Rel>

<Var>customer</Var><Var>product</Var><Ind>5.0 percent</Ind>

</Atom>

</head>

<body>

<And>

<Atom><Rel>premium</Rel><Var>customer</Var></Atom>

<Atom><Rel>onsale</Rel><Var>product</Var></Atom>

<Naf>

<Atom><Rel>special</Rel><Var>product</Var></Atom>

</Naf>

</And>

</body>

</Implies>

<Equal><Ind>fatherOFtom</Ind><Ind>bob</Ind></Equal>

<Equal><Ind>fatherOFtom</Ind><Ind>uncleOFmary</Ind></Equal>

<Atom><Rel>premium</Rel><Ind>bob</Ind></Atom>

<Atom><Rel>onsale</Rel><Ind>clothes</Ind></Atom>

Results: discount("bob", clothes, "5.0 percent").

discount("uncleOFmary", clothes, "5.0 percent").

discount("fatherOFtom", clothes, "5.0 percent").

A detailed design of an indexing system has been completed for OO jDREW
(http://www.jdrew.org/oojdrew/docs/OOjDREWIndexDesign.pdf) that will in-
dex the combined positional and slotted parameters on the top-level of RuleML
atoms, along with their associated rest parameters. Once implemented, it should
provide a significant increase in efficiency for the common cases, without creating
too much overhead for the more unusual boundary cases.

4 Conclusions

RuleML has an open source implementation that is freely available and main-
tained as the standard evolves. The syntax of the family of sublanguages is spec-
ified by modular XML Schema definitions. The operational semantics of RuleML
is implemented by a set of bidirectional interpreters (OO jDREW) written in
Java for cross-platform compatibility. For interoperability with other standards,
translators have also been realized, primarily via XSLT.

References

1. Reasoning about Anonymous Resources and Meta Statements on the Semantic
Web, G. Yang and M. Kifer, In Journal on Data Semantics, Volume 1, Pages
69-97, 2003.

2. The Design of j-DREW: A Deductive Reasoning Engine for the Web, B. Spencer,
In Proceedings of the First CologNET Workshop on Component-Based Software
Development and Implementation Technology for Computational Logic Systems.
CBD ITCLS 2002, Madrid, Spain. September 20, 2002. pp. 155-166.

3. OO jDREW: Design and Implementation of a Reasoning Engine for the Seman-
tic Web, Marcel Ball, CS 4997, Faculty of Computer Science, University of New
Brunswick, Fredericton, Canada, April 2005.

4. Object-Oriented RuleML: User-Level Roles, URI Grounded Clauses, and Order-
Sorted Terms, H. Boley, In Proc. Rules and Rule Markup Languages for the Se-
mantic Web (RuleML-2003). Sanibel Island, Florida, LNCS 2876, Springer-Verlag,
October 2003.

