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We present a theory of the electronic and optical properties of a charged artificial benzene ring (ABR). The

ABR is described by the extended Hubbard model solved using exact diagonalization methods in both real

and Fourier space as a function of the tunneling matrix element t , Hubbard on-site repulsion U , and interdot

interaction V . In the strongly interacting case, we discuss exact analytical results for the spectrum of the hole in a

half-filled ABR dressed by the spin excitations of the remaining electrons. The spectrum is interpreted in terms of

the appearance of a topological phase associated with an effective gauge field piercing through the ring. We show

that the maximally spin-polarized (S = 5/2) and maximally spin-depolarized (S = 1/2) states are the lowest

energy, orbitally nondegenerate, states. We discuss the evolution of the phase diagram and level crossings as

interactions are switched off and the ground state becomes spin nondegenerate but orbitally degenerate S = 1/2.

We present a theory of optical absorption spectra and show that the evolution of the ground and excited states,

level crossings, and presence of artificial gauge can be detected optically.

DOI: 10.1103/PhysRevB.92.245304 PACS number(s): 73.21.La, 71.10.Fd, 78.47.da, 78.40.−q

I. INTRODUCTION

There is currently interest in developing controlled quantum

many-body systems using semiconductor quantum dots and

molecules as means to understand the many-body problem as

well as for applications in nanoelectronics, nanospintronics,

and quantum information processing. Single [1,2], double

[3–5], triple [6–12], and quadruple lateral gated quantum

dot molecules in GaAlAs/GaAs heterojunctions or with

dangling bonds on silicon surface have been demonstrated

experimentally [13–15] and extensively studied theoretically

[16–31]. The capability to localize electrons in artificial lateral

quantum dot molecules opens up the possibility of exploring

the properties of the 1D Hubbard model, a model of strongly

correlated electrons [32–38]. The 1D Hubbard model of

benzene rings is of recent interest in the context of charge

separation in mesoscopic rings [39–42], optical properties

of strongly correlated oxides [38], quantum tunneling in

vertically coupled rings [30], inelastic co-tunnelling in double,

triple, and benzenelike quantum dot molecules [43], electron

localization [44], transport [45,46], quantum interference [47],

and Coulomb blockade [48]. Of particular interest here are

the properties of charged rings where the orbitally degenerate

ground state leads to non-Fermi liquid behavior and the Kondo

effect in transport [46]. Since graphene and graphene derived

nanostructures [49] are built of benzene rings, understanding

artificial benzene rings is also important for the understanding

of graphene. There have been already several experimental

realizations of artificial graphene as a platform to study Dirac

fermions and topological phases [50–52].

The artificial benzene rings could be now realized in

hexagonal semiconductor nanowires. Ballester et al. [44]

investigated theoretically a quasi-2D hexagonal nanostructure

cut out of an AlAs/GaAs/AlAs core shell nanowire. They have

shown that in a such hexagonal ring, the states would weakly

localize at the six corners. However, the weak localization

resulted in features different from what is expected in a

benzene ring, for example, the five-electron ground state was

not doubly degenerate. Recently, Funk et al. [53] demonstrated

confinement of electrons in six one-dimensional electron

channels localized at the six corners of a hexagonal core shell

nanowire. If one was to fabricate a wrap-around gate, shown

in Fig. 1, one could create six quantum dots, one in each

1D channel. Additional gates, not shown, could control the

tunneling of electrons between different dots. The tunnelling

between the dots and the Coulomb interactions could be tuned

by changing the size of the structure to modify the distance

between the dots. After construction, the interactions could be

altered by changing the gate potentials or adding electrodes

to individually control the interactions among specific dots

[16,31,44,54–57]. The advantage of such a system would be

its tunability in comparison to the natural benzene, allowing

for the experimental test of the properties of the 1D Hubbard

model, including the existence of a topological phase in the

strongly interacting ring.

Motivated by the experiments and theoretical interest, we

provide here a theory of the electronic and optical properties of

an artificial, charged benzene ring (ABR) molecule described

by the Hubbard model with tunable parameters; interdot

tunneling t and Coulomb interactions U and V . In the strongly

interacting case, U ≫ t and V = 0, the 1D Hubbard model is

exactly solvable [33–36]. The spectrum of the hole in a half-

filled ABR dressed by the spin excitations of the remaining

electrons can be interpreted in terms of the appearance of

a topological phase associated with an effective gauge field

piercing through the ring [16,19,29,33,41,42]. We classify the

hole spectrum by the total electron spin and we show that

the maximally spin-polarized (S = 5/2) and maximally spin-

depolarized (S = 1/2) states are the lowest energy, orbitally

nondegenerate states. We discuss the evolution of the phase

diagram and level crossings as interactions are switched off

and the ground state becomes spin nondegenerate, S = 1/2,

but orbitally degenerate. We present a theory of the optical

absorption spectra and show that the evolution of the ground

and excited states, level crossings, and artificial gauge can be

detected optically.
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FIG. 1. (Color online) Confining a 2D electron gas in a nanowire.

Proposed model for realization of an artificial benzene ring by

confining electrons to the six corners of a hexagonal nanowire.

II. THE MODEL

Following previous work [29], the artificial benzene

molecule [58–61] is assumed to have one spin-degenerate

orbital per quantum dot, with the molecule containing up

to Ne = 12 electrons [16,19]. Its electronic properties are

described microscopically within the extended Hubbard model

[17], which in the real-space basis, is given as [29]

Ĥ =
6

∑

σ,i=1

Eic
+
iσ ciσ −

6
∑

σ,〈i,j〉
tijc

+
iσ cjσ

+
6

∑

i=1

Uini↓ni↑ + 1

2

∑

〈i,j〉
Vij̺i̺j . (1)

Here, c+
iσ (ciσ ) are operators creating(annihilating) a spin-σ

electron on a localized quantum dot orbital i with energy

Ei , while the spin and charge density are expressed as niσ =
c+
iσ ciσ and ̺i = ni↓ + ni↑, respectively. The on-site interaction

between two electrons on each dot is given by Ui while tij and

Vij characterize the tunneling and Coulomb matrix elements

between dots i and j . We only retain the nearest-neighbor

(NN), 〈ij 〉, elements of both. The Hamiltonian matrix for a

single electron tunneling between six dots is then explicitly

written as

Ĥ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 t 0 0 0 τ

t 0 t 0 0 0

0 t 0 t 0 0

0 0 t 0 t 0

0 0 0 t 0 t

τ 0 0 0 t 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (2)

where τ represents the tunneling between dot 1 and dot 6.

τ = t for the closed ring and it is τ = 0 for a finite chain.

The Hamiltonian (1), can also be rotated into the Fourier

space of itinerant electrons using a Fourier transform of the

real-space creation/annihilation operators,

a+
κi

= 1√
6

6
∑

j=1

eiκi (j−1)c+
j , (3)

where κi = {0,±π/3,±2π/3,π} are the six allowed wave

vectors. The operators a+
κi

(aκi
) create(annihilate) an electron

FIG. 2. (Color online) (a) The ABR structure (b) one-electron

spectrum labeled with wave vectors.

on a Fourier state |κi〉. Assuming all dots on resonance, i.e.,

Ei = E, Ui = U , Vij = V , the rotated Hamiltonian becomes

Ĥ =
6

∑

σ,i

ǫκi
a+

κiσ
aκiσ

+ 1

2

∑

ijklσσ ′

〈κiκj |Vee|κkκl〉a+
κiσ

a+
κj σ ′aκkσ ′aκlσ

. (4)

The transformation into itinerant molecular |κi〉 states di-

agonalizes the Hamiltonian with the following eigenvalues

ǫκi
= E + 2t cos κi giving the single-particle spectrum shown

in Fig. 2.

The second term in Eq. (4) describes the Coulomb interac-

tion matrix elements between molecular states,

〈κiκj |Vee|κkκl〉 = U + 2V cos (κl − κi)

6
δ(κi + κj ,κk + κl).

(5)

We note that the total wave vector κtot = ∑Ne

i κi , is conserved

in Coulomb scattering.

With the Hamiltonian established, we expand the many-

body states in Ne-electron configurations |α〉, created by

distributing Ne electrons on six molecular orbitals obeying the

Pauli exclusion principle, where |α〉 = ∏

i=1,Ne
c+
iσ |0〉 and |0〉

is the vacuum. Similarly, we construct the many-electron states

using the real space orbitals. By constructing a real-space or a

Fourier-space Hamiltonian matrix for Ne electrons with spin

Sz, and diagonalizing the matrix, we obtain the corresponding

eigenenergies EfNe
and eigenvectors |fNe

〉 in terms of real or

Fourier space orbitals.

The optical properties of the ABR are described using the

Fermi’s golden rule [62]. The transition rate from the ground

state to excited states of the Ne electron system via absorption

of a photon with energy ω is given by

ANe
(ω) =

∑

f

WGS|〈fNe
|P̂ +|GSNe

〉|2δ
(

EfNe
− EGS − ω

)

,

(6)

where |GSNe
〉 is the Ne electron ground state with energy

EGS, WGS is the probability of its occupation, and |fNe
〉

is the excited state with energy EfNe
. The polarization

operator P + moves an electron from a filled state to a

higher-energy, unoccupied state, while annihilating a photon,

P̂ + = ∑

κj ,κi ,σ
d(κj ,κi)a

+
κj σ

aκiσ
[62].

The dipole element d(κj ,κi) can be expressed in the basis of

localized orbitals. Since the molecular orbitals |κj 〉 are linear

245304-2
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combinations of the atomic orbitals, we can expand the dipole

element as

d(κj ,κi) =
N

∑

l=1

N
∑

f =1

A∗
j,lAi,f 〈l|
ε · 
r|f 〉. (7)

The term 〈l|
ε · 
r|f 〉 in the basis of localized quantum dot

orbitals ψ(r − Rl) is evaluated as

〈l|
ε · 
r|f 〉 = 
ε ·
∫

d
rψ∗(
r − 
Rl)
rψ(
r − 
Rf ). (8)

Shifting 
r → 
r + 
Rl , we arrive at

〈l|
ε · 
r|f 〉 = 
ε ·
∫

d
rψ∗(
r)(
r + 
Rl)ψ(
r − ( 
Rf − 
Rl))

= 
ε ·
∫

d
rψ∗(
r)
rψ(
r − ( 
Rf − 
Rl))

+ 
ε · 
Rl

∫

d
rφ∗(
r)φ(
r − ( 
Rf − 
Rl)), (9)

where the first term is nonzero only if l �= f , and from the

orthogonality of the atomic orbitals the second term is nonzero

only if l = f . Only including nearest-neighbor terms, the

dipole element in the basis of atomic orbitals can be simplified

to

〈l|
ε · 
r|f 〉 = D
ε · ( 
Rf − 
Rl)δ〈lf 〉 + 
ε · 
Rlδlf , (10)

where D = |
∫

d
rψ∗(
r)
rψ(
r − 
R〈lf 〉)| is the dipole strength

coefficient calculated for NN orbitals and 
ε is the polarization

of light. In what follows, we will use the numerical values

obtained for graphene pz orbitals [62].

Due to the hexagonal structure of the ABR, the vectors

extending from the center of the ABR to the localized orbitals

are equal in magnitude, with directions varying as multiples

of 2π/6, as depicted in Fig. 3. As a result, the dot product

between the polarization of light and the vector 
Rm pointing

from the center of the ring to each localized orbital m that

appears in Eq. (10) can be simplified as

ε± · 
Rm = |R|e±im2π/6. (11)

The dipole elements between molecular states are calculated

by writing them out explicitly in terms of the atomic orbitals.

For light that is circularly polarized, ε±, the dipole element

FIG. 3. (Color online) The six dipole moments measured from

the center of a benzene ring.

between molecular states can be expanded as

〈κj |ε± · 
r|κi〉 = 1

6

6
∑

p,q

ei(κiq−κj p)〈p|ε± · 
r|q〉, (12)

where p,q are localized pz orbitals. We can open up the sum

using Eq. (10) and retain δpq and δ〈pq〉 elements since we are

only including up to the nearest-neighbor tunneling. Then the

expression above becomes

〈κj |ε± · 
r|κi〉 = 1

6

∑

p

[ei(κi (p−1)−κj p)ε± · D( 
Rp−1 − 
Rp)

+ ei(κip−κj p)ε± · 
Rp

+ ei(κi (p+1)−κj p)ε± · D( 
Rp+1 − 
Rp)]. (13)

Collecting Ri and using Eq. (11) for the dot products, we

obtain

〈κj |ε± · 
r|κi〉 = |R|
6

∑

p

[eip(κi−κj ±π/3)(1 − 2D cos(κi))

+Deip(κi−κj ±π/3)e−i(κi±π/3)

+Deip(κi−κj ±π/3)e+i(κi±π/3)], (14)

which, once simplified gives

〈κj |ε± · 
r|κi〉 = |R|
6

[

∑

p

eip(κi−κj ±π/3)

]

×[1 − 2D( cos(κi) − cos(κi ± π/3))]. (15)

If we collect all the terms outside of the summation into C(κi),

the dipole element between molecular levels can be written as

d(κj ,κi) = 〈κj |
ε± · 
r|κi〉 = C(κi)δ

(

κi − κj ± π

3

)

, (16)

to give the selection rule for optical transitions—light only

couples the molecular states |κi〉 and |κf 〉 that differ by ±π/3.

III. ELECTRONIC STRUCTURE OF CHARGED

ARTIFICIAL BENZENE RING

We now focus on the charged artificial benzene ring.

Removing (adding) an electron from the half-filled ABR

creates a hole (electron) in a charge neutral ABR. The hole

can be thought as moving in the presence of Ne = 5 electrons

with the total spin projections of Sz = {5/2,3/2,1/2}.
We now proceed to discuss the energy spectrum of the hole

dressed by the electronic cloud with different total spin S for

very strong interactions, U = ∞ but V = 0, such that double

electronic occupancy is not allowed. In this strongly interacting

regime, it is convenient to work in the real-space basis of the

ABR. In this limit, the 1D Hubbard model is exactly solvable

[33–36]. We discuss the energy spectrum and wave functions

of the hole in a half-filled ABR dressed by the spin excitations

of the remaining electrons. We focus on the appearance of

a topological phase associated with an effective gauge field

piercing through the ring [16,19,29,33,41,42]. The phase is

only present in a ring topology but absent for a linear chain.

We classify the hole spectrum and the topological phase by

the total electron spin, show that the maximally spin-polarized
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(S = 5/2) and maximally spin-depolarized (S = 1/2) states

are the lowest energy, orbitally nondegenerate states, and

discuss how the topological phase can be detected in optical

experiments.

A. Strong interactions and emergence of an artificial gauge in

the spectrum of a hole

1. Hole in a spin polarized electronic state Sz = 5/2

In the maximally polarized subspace, Sz = 5/2, the 5 spin-

polarized electrons are distributed on six dots, leaving a hole

in the mth dot:

|hm〉 = cm↓

6
∏

i

c+
i↓|0〉. (17)

Just like the QQD [29] or the TQD [18], the Hamiltonian for a

hole in a spin-polarized, half-filled system and that of a single

electron given in Eq. (2) are the same except for the change of

sign of t , resulting in the same single-particle energy spectrum

as depicted in Fig. 2 shifted in energy by 5E + 4V due to the

presence of the electrons residing on the five dots.

2. Hole in the presence of a minority spin Sz = 3/2

The Sz = 3/2 configurations contain a minority spin ob-

tained by flipping the spin of one electron in each hole state of

the Sz = 5/2 subspace such that

|j,hm〉 = c+
j↑cj↓|hm〉, (18)

where |hm〉 is the Sz = 5/2 hole state defined in Eq. (17) and j

is the index of the minority electron with a flipped spin. We can

take the Fourier transform of the minority spin state, |j,hm〉,
that tunnels among the five filled states of a quasi-hole state

|hm〉, acquiring a phase of ξ every time it tunnels. Upon this

rotation, we obtain the states |ξ,hm〉 = ∑

j eijξ |j,hm〉 where

allowed values of wave vector ξ are 2π/5{0,1,2,3,4}. The

Hamiltonian becomes block diagonal in ξ , such that each block

is made out of configurations with the hole in one of the six

dots, sensing the minority-spin chirality ξ . Each one of the five

6 × 6 blocks is equivalent to the single-particle Hamiltonian,

Eq. (2), with an artificial gauge field eiξ emerging for the

hole tunneling between quantum dots one and six within the

chirality space of ξ , resulting in a net phase accumulated on

the tunneling matrix element τ , τ = teiξ . The Hamiltonians

can be analytically diagonalized by realizing that the hole

acquires a phase of φξ = ξ/6 every time it tunnels from one

dot to another within each minority-spin chirality ξ . Then the

eigenvectors |α,ξ 〉 are obtained as

|α,ξ 〉 = 1√
6

6
∑

m

eimφξ eimα|ξ,hm〉 (19)

and Eα,ξ = 5E + 2tcos(α + φξ ), respectively, for α =
2π/6{0,1,2,3,4,5}. We see that the wave vector of the hole is

a combination of the bare wave vector α and the wave vector

φξ of the minority-spin current of the background electrons.

3. Hole in the spin-depolarized Sz = 1/2 state

The Sz = 1/2 subspace requires flipping the spin of two
electrons in every Sz = 5/2 quasihole configuration. This can

FIG. 4. (Color online) (a) and (b) Permutation configurations for

two minority spins, Sz = 1/2, in a five-electron ABR. For a quasihole

at the lower left dot, (a) two adjacent minority electrons together

and (b) two minority electrons separated by a majority spin. (c) A

spin-current state with the beating of minority spin phases kn1
and

kn2
. (d) Hole tunneling under the influence of spin-current chirality.

be done in two ways. We can (A) flip the spins of two
adjacent electrons or (B) two electrons that are separated.
For example, starting with the |h6〉 state as defined in
Eq. (17), the spin of the two electrons can be flipped to
give |A6

1〉 = |c+
1↑c+

2↑c+
3↓c+

4↓c+
5↓〉 and |B6

1 〉 = |c+
1↑c+

2↓c+
3↑c+

4↓c+
5↓〉

as depicted in Figs. 4(a) and 4(b), respectively, where the
superscript six represents the position of the quasihole and
subscript 1 represents the configuration index. Applying
a permutation operator P̂ , which moves all electrons to
the right by one dot [33], P̂ |A6

1〉 = P̂ |c+
1↑c+

2↑c+
3↓c+

4↓c+
5↓〉 =

|c+
1↓c+

2↑c+
3↑c+

4↓c+
5↓〉 = |A6

2〉, we obtain four other permutations

of |A6
1〉 and |B6

1 〉. The Hamiltonian separates into blocks of
|A〉 and |B〉 configurations. Configurations A (B) correspond
to a pair of minority-spin electrons moving on the ring of five
electrons. Just as in the Sz = 3/2 case, for a given hole state
we can take the Fourier transform of the five Ah(Bh) minority
spin pair configurations to obtain the states differentiated by
the phase ϕ = 2π/5{0,1,2,3,4}, and generate 6 × 6 blocks for
each ϕ representing a quasihole tunneling under the influence
of an artificial gauge field in the form of Eq. (2) with τ = teiϕ .
Upon rotating each block, one finds that the A and B subspaces
are degenerate. Although the permutation operator provides a
convenient way to describe the dressed quasihole states, the
states obtained by this method are not eigenvectors of the total

spin operator Ŝ2.

4. Total spin classification of Sz = 1/2 hole states

In order to obtain the eigenstates of the total spin operator,

we introduce the spin current operator Ĵn. The spin-current

operator takes an electron from an Sz = 5/2 quasihole state

|hm〉, flips its spin and moves it among the occupied dots,

adding a phase of eikn each time it tunnels such that

Ĵn =
∑

j

eiknjc+
j↑cj↓, kn = 2π

5
n, n = {1,2,3,4,5}. (20)
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For Sz = 1/2 subspace, one needs to apply spin-current

operators twice,

Ĵn2
Ĵn1

=
∑

j

∑

l

ei(jkn1
+lkn2

)c+
l↓cl↑c+

j↓cj↑, (21)

on to the spin-polarized |hm〉 state. In this process there appear

25 (j,l) pairs of minority spin electrons at sites j and l and

25 current states (kn1
,kn2

). Not all of these configurations have

nonzero amplitudes. The spin-current states {kn1
,kn2

} and the

(j,l) pairs created from the beating of the two phases kn1
and

kn2
carried by the minority spins [Fig. 4(c)] are orthogonalized,

removing duplicates that emerge due to indistinguishable

nature of electrons. Out of the 25 (j,l) pairs, five do no exist

since c+
l↓cl↑c+

j↓cj↑|hm〉 = 0, and the remaining 20 are made out

of duplicates since c+
l↓cl↑c+

j↓cj↑ = c+
j↓cj↑c+

l↓cl↑, leaving only

ten distinct (j,l)-pairs. However, removing the five nonexistent

(j,l) pairs destroys the orthogonality of the spin-current states,

which require reorthogonalization.

Upon closer examination of the spin-current states, one can

see that {kn1
,kn2

} = {kn2
,kn1

}, which automatically removes

ten out of these 25 spin-current states leaving 15 to work with.

Though at first glance these 15 spin-current states seem to be

distinct, we expect to have only ten states at the end of this

process, and upon reorthogonalization, we will see that there

are five duplicates, leaving ten distinct spin-current states. We

start by grouping the spin-current states {kn1
,kn2

} according to

their total spin current, ktot = kn1
+ kn2

= 2π
5

{1,2,3,4,5} (in

units of 2π/5):

ktot = 1 2 3 4 5

{k1,k5} {k2,k5} {k3,k5} {k4,k5} {k5,k5}
{k3,k3} {k1,k1} {k4,k4} {k2,k2} {k1,k4}
{k2,k4} {k3,k4} {k1,k2} {k1,k3} {k2,k3}

Above states are orthogonal to one another if they belong

to different total-spin-current subspaces, yet within each

subspace they are not. Acting with the Ŝ2 operator, one can

see that all {kn1
,k5} states belong to the S = 3/2 space, except

for {k5,k5}, which is the only state with S = 5/2. When the Ŝ2

operator acts on the remainder of the states, we see that they are

not eigenfunctions of the total S operator. These states, with

no definite spin, are orthogonalized using the Gram-Schmidt

method revealing that both of the undefined total spin states

within a given subspace are actually one another’s duplicate,

resolving the problem of five excess spin-current states.

Then, from each Sz = 5/2 quasihole state, applying the

spin-current operator twice, one arrives at ten total-spin current

states, with five distinct ktot. Just as in the Sz = 3/2 case,

we can now divide the Hamiltonian into ten subspaces, each

belonging to a different total-spin-current, total-spin {ktot,S}
pair. Again, the Hamiltonians of each {ktot,S} subspace, made

out of six vectors |ktot,S,hm〉 for each hole position, are similar

to that of a single-electron Hamiltonian [see Eq. (2)] with an

additional 5E + 4V energy on the diagonals and the tunneling

matrix element between dots 1 and 6 modified by the phase

the quasihole acquires when dressed by the spin current,

FIG. 5. (Color online) Energies of the S = 5/2 and 3/2 states as

a function of total wave vector α + φ or total phase. Each energy

level shown above is degenerate with energy levels of S = 1/2 states

as discussed in the text. U → ∞ limit, V = 0.

τ = teiktot [Fig. 4(d)]. From the phase, one can deduce that the

energy spectrum is doubly degenerate since there is a S = 1/2

and a S = 3/2 or 5/2 subspace for each ktot. The following

eigenfunctions

∣

∣χα
ktot,S

〉

= 1

6

6
∑

m

ei·m·φktot ei·m·α|ktot,S,hm〉, (22)

in which the hole gains one-sixth of the total phase, φktot
=

(ktot)/6, every time it tunnels from one dot to another, diagonal-

ize the Hamiltonian [Eq. (2)] with the phase τ = teiktot , where

α = 2π
6

{0,1,2,3,4,5}. Figure 5 depicts the allowed energy

levels. As derived above, the Sz = 1/2 subspace contains

all possible total spin states, S = {5/2,3/2,1/2}, and every

S = 1/2 state has a degenerate, higher spin pair. Then the

spectrum for the Sz = 3/2 subspace, which covers both the

S = 3/2 and the S = 5/2 total spin states, includes all allowed

energy levels. We see that the hole moving in the space of

polarized spins (Sz = S = 5/2) is restricted to only five energy

levels. Whereas when we introduce a minority spin, its chirality

acts as an additional wave vector and allows the hole to be on

more than five different states.

B. Quasihole in a weakly interacting system

Let us now study a weakly interacting system, U ≪ t ,

where the electronic properties are determined primarily by

the kinetic energy, with interactions acting as a perturbation.

Thus working in the Fourier space, where the kinetic energy

has already been diagonalized simplifies our discussion con-

siderably.

In the noninteracting limit, U → 0, we place electrons on

the single-particle levels while satisfying the Pauli exclusion

principle. For a half-filled ABR the reference state, a Fermi sea,

illustrated in Fig. 6(a), is our starting configuration. Removing

an electron creates a hole below the Fermi level. There are two
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FIG. 6. (Color online) The ground-state configuration in the

weakly interacting regime plotted in Fourier space. For U = 0,

all electrons will occupy the lowest kinetic energy levels. For six

electrons, that translates to double occupancy. When an electron

is removed, there is a degenerate ground state. Flipping a spin

from either one of them will generate an S = 3/2 ground state.

Fully polarized electrons will occupy the lowest levels with single

occupancy.

degenerate configurations for the hole as depicted in Fig. 6(b).

Since κ = ±π/3 levels are degenerate, creating a hole in either

one costs the same energy. From each of these degenerate

states with spin S = 1/2, one can create the lowest energy

S = 3/2 configurations with energy EGS
3/2 = −5t as depicted

in Fig. 6(c) (S = 3/2). Just like the S = 1/2 ground state, the

S = 3/2 ground state is also degenerate due to the degeneracy

of the κ = ±2π/3 levels. Finally, the lowest energy S = 5/2

state is obtained by placing a single electron on each one of

the lowest five levels, resulting in EGS
5/2 = −2t and κGS

5/2 = 0

as shown in Fig. 6(c) (S = 5/2). Unlike its lower total spin

counterparts, this ground state is nondegenerate since there is

only one way of placing five spin-polarized electrons on to

the lowest five levels. Then, in the weakly interacting regime,

the ground state of the charged ABR has a unique total spin

but the degeneracy arises from the degeneracy of the orbitals.

This is to be contrasted with the strongly interacting regime

where the two unique total spin states, S = 1/2 and 5/2, are

degenerate. The difference in the nature of the ground state in

the two limits implies level crossing as a function of the

interaction strength.

IV. NUMERICAL RESULTS FOR INTERMEDIATE

INTERACTION STRENGTH 0 < U < ∞ AND V > 0

For finite t, U, and V , we diagonalize numerically the

Hamiltonian matrix in the space of five electron configurations

in Fourier space. The evolution of the low-energy levels with

increasing U is shown in Fig. 7. Starting from the weakly

interacting regime, the first level crossing as we turn on

the interactions is found in the excited S = 3/2 subspace

where the wave vector of the lowest energy state changes

from κ = ±2π/3 to ±π/3. Next, the crossing between the

degenerate {S = 3/2,κtot = ±π/3} states and the lowest {S =
5/2,κtot = 0} state changes the total spin order of excited

states. As we keep increasing the interaction strength, the

FIG. 7. (Color online) Transitions in the lowest energy levels

with increasing interaction strength U . The black arrows highlight the

transition points. Blue, red, and gray colors correspond to S = 1/2,

3/2, and 5/2 states, while solid and dashed lines distinguish the κtot

of these subspaces.

ground state of the ABR undergoes a transition from the

S = 1/2, degenerate in momentum κ = ±π/3 states to a

nondegenerate S = 1/2, κ = 0 state. As U grows, the energy

of the S = 1/2 ground state approaches the {S = 5/2,κtot = 0}
state, eventually becoming degenerate as predicted and derived

in the previous section.

V. ABSORPTION SPECTRUM OF A CHARGED

ARTIFICIAL BENZENE RING

Here, we will analyze how the electron-electron interaction

driven transitions in the ground and excited states can

be detected by optical spectroscopy. The transition from

a degenerate, κ = ±π/3, ground state to a nondegenerate

κ = 0 angular momentum ground state can be captured in

the absorption spectrum using the selection rules on angular

momentum. We have already derived the selection rules for

angular momentum and photons conserve the total spin of the

system in the absence of spin-orbit interaction.

A. Absorption spectrum of a weakly interacting charged

artificial benzene ring

In the noninteracting limit, U = 0, the absorption is solely

dictated by the single particle level selection rules. Starting

with either one of the two κtot = ±π/3, S = 1/2 states (κtot =
−π/3 shown as inset in Fig. 8), an electron from the κ = 0

level can be excited to the singly occupied κ = ∓π/3 level via

a photon with energy ω = t . For the cost of 2t , either one of

the electrons in the doubly occupied κ = ±π/3 can be moved

to κ = ±2π/3. In the noninteracting regime, other transitions

are not allowed due to optical selection rules, leading to two

absorption lines at ω = t and ω = 2t shown in Fig. 8(a).

When the interactions are turned on, multiple configu-

rations contribute to the absorption spectrum as shown in

Fig. 9(a) for U = t . Starting with the state with S = 1/2,
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FIG. 8. (Color online) Absorption spectrum of charged ABR.

V is kept fixed at V = t/3. (a) Absorption spectrum for U = 0.

(b) Absorption spectrum for U = 10t , depicting the splitting of

low-energy transitions into many lines and emergence of transitions at

E ≈ U , the excited Hubbard band. (c) Optical spectrum for U ≫ t . At

U = 125t , only a single, low-energy transition is allowed as derived in

the text. The inset highlights the fact that as the interaction strength

increases the many-electron states become highly correlated and a

real space representation is necessary for a better understanding of

the problem.

κtot = π/3, a photon can only couple this state to κtot = 2π/3,0

states. Due to interactions, one needs to consider correlated

states within each total wave vector subspace.

Let us concentrate on the configurations with the greatest

contribution to the absorption spectrum within each of the

κtot subspace. For the weakly interacting regime, these are

the lowest kinetic energy configurations. There are four

configurations with kinetic energy −5t in the κtot = 2π/3

subspace as depicted in green boxes in Fig. 9(a). They all

have two electrons in the lowest, κ = 0, molecular state and

the remaining three electrons are distributed on the degenerate

levels. Absorption transitions from the κtot = π/3 ground state

to a superposition of the κtot = 2π/3 configurations are plotted

in green in Fig. 9(b). Although some of the configurations

shown in the boxes are not directly optically accessible from

the ground state, they contribute to the correlated states and

hence acquire finite oscillator strength. Since the cost of

moving an electron across the degenerate levels is 2t , the green

peaks in the absorption spectrum are around 2t , shifted left and

right due to correlations.

The same analysis can be done for the κtot = 0 subspace.

The lowest-energy configurations within this subspace are

depicted in red boxes in Fig. 9. The lowest kinetic energy,

t , excitation, in which an electron from the κ = 0 molecular

level is moved up to the κ = −π/3 molecular level, interacts

with higher energy, 2t , excitations through off-diagonal terms.

The red absorption peak around E = |t | corresponds to a state

mainly composed of the low-energy configuration. Since the

cost of moving an electron across the degenerate levels costs

2t , the other two peaks that are mainly composed of the higher

energy κtot = 0 states, are around E = 2|t |.

FIG. 9. (Color online) The optically allowed configurations (a)

and the absorption spectrum from the weakly interacting, degenerate

ground state (b). The configurations responsible for the low-energy

peaks in the spectrum are shown in green and red boxes. Starting

with the ground state with κtot = π/3, the peaks in the absorption

spectrum that correspond to κtot = 2π/3 (in green) and the κtot = 0

(in red) excitations are identified and separated. t = −3.0 eV, U = t ,

and V = t/3.

Let us return to the absorption spectrum for the interacting

ABR shown in Fig. 8(b). In the calculated absorption spectrum

for the interacting ABR (U = 10t), the two peaks at t and 2t

that are characteristic of the noninteracting system, split into

many lines. At higher energies, E ∼ U , there appears a new

band of transitions to the first Hubbard band. These excited

states correspond to creation of “holons” (empty sites) and

“doublons” (doubly occupied states) [38].

As we increase U/t further, the S = 1/2 ground state of

the charged ABR changes from the degenerate κtot = π/3

states to the nondegenerate κtot = 0 state, which approaches

the spin-polarized S = 5/2 state as shown in Fig. 7. The optical

transitions to the first Hubbard band move to higher energies

and the low-energy absorption spectrum from the S = 1/2,

κtot = 0, ground state simplifies to an absorption peak at

E = t as shown in Fig. 8. We can understand the absorption

spectrum for U → ∞ and its relationship with the quasihole

energy spectrum (Fig. 5), determined by the emergence of the

artificial gauge, by evaluating the dipole elements between

total-spin-current eigenvectors. Upon evaluation of the dipole

matrix elements between total-spin-current quasihole states,

〈

k1
tot,S1,hm1

∣

∣ε± · 
r
∣

∣k2
tot,S2,hm2

〉

= Cm2

m1
δ
(

k1
tot − k2

tot

)

, (23)

the conservation rule on ktot is obtained. In the equation above,

Cm2
m1

is the dipole strength that depends on the positions of the

hole. Conservation of ktot means that, only absorption within

states with the same total-spin-current subspaces are allowed.

Now, if the dipole matrix elements between total-spin-current

eigenvectors, |χα
ktot,S

〉, are calculated remaining within the same
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total-spin-current subspace we get

〈

χ
α1

ktot,S

∣

∣ε± · 
r
∣

∣χ
α2

ktot,S

〉

= 1

6

∑

m1

ei·m1(α2−α1±1)

× [1 + Ceiktotδ(m1,1) + C∗e−iktotδ(m1,6)].

Even though there seems to be a condition α2 = α1 ± 1 on the

total-spin-current eigenvector index, it is destroyed by the fact

that there is hole-position dependence in δ(m1,1) and δ(m1,6).

However, for the ground state where ktot = 0 and α = 0, the

condition holds true allowing only α2 = α1 ± 1 transitions.

Since the α = 1 and 5 states are degenerate, we find a single

peak in the absorption spectrum obtained numerically for U =
125t in Fig. 8(c).

VI. CONCLUSION

We presented here a theory of a charged artificial benzene

ring (ABR) described by the extended Hubbard model. We

discussed an exact expression for the energy spectrum of

the quasihole in a half-filled ABR in terms of the emergent

topological gauge field in the limit of strong interactions and

showed the dependence of the spectrum on the total spin of

background electrons. Using exact diagonalization techniques,

we have described the evolution and transitions in the ground-

state spin and momentum as a function of the interaction

strength. The evolution of the ground and excited states with

interaction strength as observable in the optical absorption

spectrum was predicted and analyzed. It is hoped that the

results presented here will stimulate research on artificial

benzene rings fabricated using semiconductor quantum wires

as models of strongly correlated electron systems.
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