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Abstract. Multirelational data mining methods discover patterns across
multiple interlinked tables (relations) in a relational database. In many
large organizations, such a multi-relational database spans numerous de-
partments and/or subdivisions, which are involved in different aspects
of the enterprise such as customer profiling, fraud detection, inventory
management, financial management, and so on. When considering mul-
tirelational classification, it follows that these subdivisions will express
different interests in the data, leading to the need to explore various sub-
sets of relevant relations with high utility with respect to the target class.
The paper presents a novel approach for pruning the uninteresting rela-
tions of a relational database where relations come from such different
parties and spans many classification tasks. We aim to create a pruned
structure and thus minimize predictive performance loss on the final
classification model. Our method identifies a set of strongly uncorrelated
subgraphs to use for training and discards all others. The experiments
performed demonstrate that our strategy is able to significantly reduce
the size of the relational schema without sacrificing predictive accuracy.

1 Introduction

Knowledge discovery from relational databases poses a unique opportunity for
the data mining community. In many large organizations, such a relational data-
base spans numerous departments and/or subdivisions and these subdivisions
will express different interests in the data, leading to the need to explore various
subsets of relevant relations with high utility with respect to the target class.
Furthermore, acquiring such data is often expensive. Also, it becomes harder to
preserve data privacy when data in a database is from multiple sources. These
problems can be mitigated by pruning uninteresting relations before constructing
a model. Few attempts to address this issue have been made so far [5, 12].

This paper presents the Subgraph Ensemble Structure Pruning(SESP) method
for pre-pruning relational databases. The SESP approach aims to create a pruned
relational schema that models only the most informative substructures, while
maintaining satisfactory predictive performance. This is achieved by removing
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either irrelevant or redundant substructures from the database. The SESP al-
gorithm assumes that strongly correlated substructures contain redundant in-
formation. Those which are weakly correlated to the class are said to be of low
relevance. The SESP approach initially decomposes the relational domain into
subgraphs. From this set, it subsequently identifies a subset of subgraphs which
are strongly uncorrelated with each other, but correlated with the target class
(uncorrelated subgraphs). All other subgraphs are discarded. We compare the
classifiers constructed from the original schema with those constructed from the
pruned database. Our experiments on both real-world and synthetic databases
demonstrate that the SESP approach is able to significantly reduce the com-
plexity of the relational schema without sacrificing the predictive accuracy.

The paper is organized as follows. Section 2 describes the problem setting.
Next, a detailed discussion of the SESP algorithm is provided in Section 3.
Section 4 presents a comparative evaluation. Section 5 concludes the paper.

2 Problem Setting

The problem setting for our SESP strategy is defined by a relational database
schema ℜ, which is described by a set of tables {R1,· · ·,Rn}. Each table Ri

consists of a set of tuples TR, a primary key, and a set of foreign keys (in this
paper, we refer to primary key and foreign keys as key attributes). Foreign key
attributes3 link to primary keys of other tables. This type of linkage defines a
join (relationship) between the two tables involved. A set of joins with n tables
R1 ✶ · · · ✶ Rn describes a join path, where the length of it is defined as the
number of joins it contains.

In a relational classification setting a database ℜ contains a target relation
Rt, a set of background relations Rb, and a set of joins (J). Each tuple x ∈ TRt

includes a unique primary key attribute x.k (tuple identifier) and a categorical
variable y. The task in this setting is to find a function F (x) which maps each
tuple x of the target table Rt to a category label y. That is, y = F (x,Rt, Rb, J).

The SESP method aims to pre-prune the relational structure for the task
of multirelational classification without loss of predictive accuracy. The SESP
pruning strategy is closely related to our Multiple View Relational Classification
(MRC) method presented by Guo and Viktor in [4]. The MRC method aims at
constructing an accurate relational classifier directly from a relational database
by using multiple views on the data.

3 The SESP Pruning Approach

The core idea of the SESP method is to identify a small set of strongly un-
correlated subgraphs given a database schema. As presented in Algorithm 1,
the process consists of two key steps: 1) to initially decompose the relational
database schema into subgraphs (subgraph construction); and 2) to identify the
subset of strongly uncorrelated subgraphs (subgraph evaluation).

3 For simplicity, we only consider key attribute as a single attribute here.
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Algorithm 1 The SESP Pruning Approach

Input: A relational database ℜ= {Rt, Rb, J}
Output: A pruned database ℜ′ = {Rt, R

′

b, J
′}

1: Divide ℜ into training data set T t and evaluation set T m;
2: Convert ℜ into undirected graph G;
3: Decompose G into a set of subgraphs {S};
4: Build a classifier for each subgraph in {S}, using T t;forming {C1

d , · · · , Cm
d };

5: Let subgraph set C = ∅;
6: Generate an evaluation examples set T

′

m, using T m and {Ci
d}

m
1 ;

7: Select a subgraph feature set A
′

from T
′

m;
8: For each Ci

d with at least one attribute in A
′

: C.add(Ci
d); forming {Ci}k

1 (k ≤ m);
9: Remove duplicate relations/relationships from {Ci}k

1 ; forming ℜ′ = {Rt, R
′

b, J
′};

10: return ℜ′.

3.1 Subgraph Construction

The subgraph construction process aims to build a set of subgraphs given a
relational database schema where each subgraph corresponds to a unique join
path. The construction process initially converts the relational database schema
into an undirected graph, using the tables as the nodes and joins as edges.

Two heuristic constraints are imposed on each constructed subgraph. The
first is that each subgraph must start at the target relation. This constraint
ensures that each subgraph will contain the target relation and, therefore, be
able to construct a classification model (details to be discussed in Section 3.2).
The second constraint is for relations to be unique for each candidate subgraph.
Typically in a relational domain, the number of possible join paths given a large
number of relations is usually very large, making it too costly to exhaustively
search all join paths [7]. Also, join paths with many relations may decrease the
number of entities related to the target tuples. Therefore, we propose to this
restriction for the SESP algorithm as a tradeoff between accuracy and efficiency.

Using these constraints, the subgraph construction process proceeds initially
by finding unique join paths with two relations, i.e. join paths with a length of
one. These join paths are progressively lengthened, one relation at a time. We
use the length of the join path as the stopping criterion, preferring subgraphs
with shorter length. The reason for preferring shorter subgraphs is that semantic
links with too many joins are usually very weak in a relational database [13].
Thus we specify a maximum length for join paths. When this number is reached,
the entire join path extraction process stops. Note that a special subgraph, one
that is comprised solely of the target relation, is created as well.

3.2 Subgraph Evaluation

In order to select which subgraphs will be best for classification, subgraphs are
evaluated according to the following methodology(Algorithm 1). Firstly, each of
the created subgraphs is used to construct a separate classifier (subgraph-based
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relational classification). Secondly, the constructed classification models are used
to generate an evaluation data set in which each instance is described by sets
of feature sets (subgraph features). Each feature set describes the knowledge
contained in one of the classification models. Thirdly, the set of subgraph features
which are strongly uncorrelated with each other, but correlated with the target
class, are identified. These subgraph feature sets correspond, therefore, to a set
of subgraphs. Lastly, subgraphs which are not selected are discarded.
Subgraph-based Relational Classification Each subgraph created in Sec-
tion 3.1 can be used to build a relational classifier using traditional single-table
learning algorithms. These methods require “flat” data presentations. In order
to employ these “flat” data methods, aggregation operators are usually used to
squeeze a bag of tuples into one attribute-based entity. Often, different aggrega-
tion functions are employed on different types of attributes. Here, for a Nominal
Attribute, the aggregation COUNT function is applied to calculate the number of
times the attribute occurs within the data set. For a Binary Attribute for which
there are only two possible values, the COUNT function is applied separately
on each of the two values. For a Numeric Attribute, the aggregation functions
SUM, AVG, MIN, MAX, STDDEV and COUNT are applied. In this way, each
subgraph separately creates a set of attribute-based training instances.
Subgraph Features Subgraph features are used to describe the knowledge held
by subgraph-based classifiers and represent the corresponding subgraphs. The
subgraph features are generated as follows. Let {C1, · · · , Cn} be n classifiers
(each is built using a different subgraph). Let T m be an evaluation data set with
m labels {y1, · · · , ym}. For each instance t (with label L) in T m, each classifier is
called upon to produce predictions {fyk

Ci(t)} (i ∈ {1, · · · , n} and k ∈ {1, · · · ,m})
for it. Here, fyk

Ci(t) denotes the probability that instance t belongs to class yk, as
predicted by classifier Ci. In this way a set of evaluation examples is constructed
where each consists of sets of prediction set {P yk

Ci (t)} and the original class label
L. For instance, C1 is described and represented by features {fyk

C1(t)}. We define
{fyi

C1(t)} to be the subgraph features of classifier C1. As an example, consider a
two class (y1 and y2) problem with two classifiers C1 and C2. For each tuple t
in the evaluation data set, each classifier Ci will assign each class yi a prediction
pi

i. Thus, the evaluation example t
′

has two attributes p1
1 and p1

2 for subgraph
C1, and two other attributes p2

1 and p2
2 for C2, along with the class of t.

Correlation Measurement of Subgraphs The SESP strategy uses a heuris-
tic measure to calculate the correlation score of a set of subgraphs (represented
by subgraph features). This measure considers the correlation information both
between subgraphs and between those subgraphs and the class to be learned. A
similar heuristic principle has previously been applied in test theory by Ghis-
elli [3] and in feature selection by Hall [6]. This heuristic assigns each subset of
features a level of “goodness.” The score is formalized by Equation 1 [6]:

Q =
KRcf�

K + K(K − 1)Rff

(1)

Here, K is the number of features in the subset, Rcf is the average feature-to-
class correlation, and Rff represents the average feature-to-feature dependence.
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To measure the degree of correlation between features and the target class
and between the features themselves, we use the notion of Symmetrical Un-
certainty (U) [10] to calculate Rcf and Rff . This score is a variation of the
Information Gain (InfoGain) measure [11]. It compensates for InfoGain’s bias
toward attributes with more values, and has been successfully applied by Ghis-
elli [10] and Hall [6]. Symmetrical Uncertainty is defined as follows:
Given features X and Y ,

U = 2.0 × �

InfoGain

H(Y ) + H(X) ✁

where H(X) and H(Y ) are the entropies of the random variables X and Y ,
perspectively. Note that, these measures need all of the features to be nominal,
so numeric features are first discretized properly.
Subgraph Pruning In order to identify a set of uncorrelated subgraphs, the
evaluation procedure searches all of the possible subgraph feature subsets, and
constructs a ranking on them. The best ranking subset will be selected, i.e. the
subset with the highest Q value.

To search the subgraph feature space, the SESP method uses a best first
search strategy [8]. The method starts with an empty set of features, and keeps
expanding, one feature at a time. In each round of the expansion, the best fea-
ture subset, namely the subset with the highest “goodness” value Q is chosen.
In addition, the SESP algorithm terminates the search if a preset number of
consecutive non-improvement expansions occurs. Based on our experimental ob-
servations we empirically set the number to five (5).

Subgraphs are selected based on the final best subset of subgraph features. If a
subgraph has no features that are strongly correlated to the class, the knowledge
possessed by this subgraph can be said to be unimportant for the task at hand.
Thus, it makes sense to prune this subgraph. The SESP algorithm, therefore,
keeps a subgraph if and only if any of its subgraph features appears in the final
best ranking subset.

4 Experimental Results

In our evaluation, we compare the accuracy of a relational classifier constructed
from the original schema with the accuracy of one built from a pruned schema.
We perform our experiments using the MRC, RelAggs [9], TILDE [2], and Cross-
Mine algorithms. The MRC and RelAggs approaches are aggregation-based al-
gorithms where C4.5 decision trees [11] were applied as the single-table learner.
The C4.5 decision tree learner was used due to its de facto standard for em-
pirical comparisons. In contrast, the CrossMine and TILDE methods are two
benchmark logic-based strategies. In addition, we only consider join paths which
contain less than four tables. This number was empirically determined and pro-
vides a good trade off between accuracy and execution time. Also, C4.5 decision
tree was applied as the subgraph-based classifiers of the SESP strategy. All ex-
periments were conducted using ten-fold cross validation. We report the average
running time of each fold (run on a 3 GHz Pentium4 PC with 1 GByte of RAM).
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4.1 Real Databases

Financial Database: Our first experiment uses the financial database from the
PKDD 1999 discovery challenge [1]. This database consists of eight tables. This
database provides us with two different learning problems. Our first learning
task (F234) is to learn if a loan is good or bad from the 234 finished tuples. The
second experimental task (F400) uses the Financial database as prepared in [13],
which has 400 examples in the target table.
ECML98 Database: Our second experiment uses the database from the ECML
1998 Sisyphus Workshop. The learning task (ECML) is to categorize the 7,329
households into classes 1 and 2 [9]. Eight background relations are provided for
this learning task. We here used the new star schema prepared in [9].

Table 1. Accuracies obtained using methods MRC, RelAggs, TILDE, and CrossMine
against the original and pruned schemas, along with the compression rate

Schema
MRC RelAggs TILDE CrossMine Compress.

OriginalPrunedOriginalPrunedOriginalPruned Original Pruned Rate

F400 88.0 % 88.0 % 89.0 % 86.8 % 81.3 % 81.0% 85.8 % 87.3 % 50.0 %
F234 92.3 % 92.3 % 90.2 % 90.2 % 86.8 % 86.8% 88.0 % 89.4 % 25.0 %

ECML 88.2 % 87.5 % 88.0 % 86.2 % 53.7 % 52.0% 85.3 % 83.7 % 55.5 %

Table 2. Execution time (seconds) required using the four tested methods against the
original and pruned schemas, along with the computational time of the SESP method

Schema
MRC RelAggs TILDE CrossMine Pruning

OriginalPrunedOriginal PrunedOriginalPruned Original Pruned Time

F400 2.83 2.25 60.00 51.83 650.00 132.32 8.10 6.76 1.97
F234 1.60 1.17 40.80 34.13 568.30 80.36 5.00 3.41 1.07

ECML 424.43 220.99 1703.58 1206.39 1108.60 167.76 570.90 366.78 356.24

Experimental Results and Discussion: The predictive accuracy we obtained, us-
ing MRC, RelAggs, TILDE, and CrossMine is presented in Table 1. The results
obtained with the respective original and pruned schemas are shown side by side.
We also present the compression rates achieved by the SESP approach in the
last column of Table 1. The compression rate considers the number of relations
of the original schema (Noriginal) and the number of relations pruned (Npruned)
and is calculated as (Noriginal − Npruned)/Noriginal. In table 2, we also provide
the execution time of the pruning process, as well as the running time required
for the four tested algorithms against the original and pruned schemas.

From Table 1, one can see that the SESP algorithm not only significantly
reduces the size of the relational schema, but also produces compact pruned
schemas that provide comparable multi-relational classification models in terms
of the accuracy obtained. The results shown in Table 1 provide us with two mean-
ingful observations. The first is that the SESP strategy is capable of pruning the
database schemas meaningfully. The compression rates for these three learning
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schemas are 50%, 25%, and 55.5%, respectively. The second finding is that the
pruned schemas produce comparable accuracies, when compared to the results
obtained with the original schemas. Results as obtained by the aggregation-based
methods show that, for two of the three databases (F400 and F234), the MRC
algorithm obtained the same predictive results when pruned. Only against the
ECML database, did the pruned MRC algorithm obtain a slightly lower accuracy
than the original (lower by only 0.7%). When considering the RelAggs algorithm,
the accuracy produced by the RelAggs method against both the pruned and full
schemas were comparable. Against the F234 data set, the RelAggs algorithm
achieved the same predictive results. Only against the F400 and ECML data
sets, did the RelAggs method yield slightly lower accuracy than the original.

When testing with the logic-based strategies, Table 1 shows that, the TILDE
algorithm obtained almost the same accuracy against two of the three tested
data sets (F400 and F234). Only against the ECML database, did the TILDE
algorithm obtain a slightly lower accuracy than the original (lower by only 1.7%).
When considering the CrossMine method, the accuracy produced by this method
against both the pruned and full schemas was also very close.

In terms of computational cost of the SESP algorithm, results presented in
Table 2 show that the pruning processes were fast. In addition, the results also
indicate that meaningful execution time reduction was achieved when building
the relational models against the pruned schema, when compared to that of
constructing models against the original relational structures.

4.2 Synthetic Databases

To further test the SESP algorithm, we generated six synthetic databases with
different characteristics. The database generator was obtained from Yin et al.
in [13]. For each database in this paper, we set the expected number of tuples
and attributes to 1000 and 15, respectively. The six databases were generated
with 10, 20, 50, 80, 100, and 150 relations (denoted as SynR10, SynR20, SynR50,
SynR80, SynR100, and SynR150), respectively. The accuracies obtained (on both
original and pruned schemas) by the MRC and CrossMine methods are shown in
Figures 1(a) and 1(b), respectively. The compression rates obtained are provided
in Figure 1(c). We also provide the execution time needed using the MRC and
CrossMine algorithms against the original and pruned schemas in Figure 1(d).

From these Figures one can again see that the SESP algorithm not only signif-
icantly reduces the complexity of the structural schemas, but also produces very
comparable classification models in terms of the accuracy obtained. The MRC
algorithm, for example, produced equal or higher accuracies for all databases,
except for a slight decrease of 0.3% with the SynR80 database. When using the
CrossMine method, the results also convince us that the pruned schemas produce
comparable classifiers in terms of accuracies obtained. In terms of compression
rate, the results in Figure 1(c) show that the compression rates were more than
80% for databases with more than 50 relations. In addition, results as presented
in Figure 1(d) show that the execution time needed for constructing relational
models using the two tested algorithms was meaningful reduced when pruned.
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(a) Accuracy (MRC) (b) Accu.(CrossMine) (c) Compression rate (d) Execution time

Fig. 1. Accuracies obtained and execution time (seconds) required by the MRC
and CrossMine methods, as well as compression rates achieved by the SESP

5 Conclusion and Future Work

Multirelational data mining application usually involves a large number of rela-
tions. This paper presents a novel algorithm to pre-prune uninteresting relations
of relational learning tasks. Our experiments demonstrate that the strategy is
able to significantly reduce the size of the relational schema while still maintain-
ing the accuracy of the final model. This research suggests that one can build
an accurate relational classification model using only a small subset of the orig-
inal schema. Our future work will include research on extending the subgraph
definition to include graphs with more than one slot chain.
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