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Abstract

For humans, to view a scene with two eyes is clearly more

advantageous than to do that with one eye. In computer vi-

sion however, most of high-level vision tasks, an example of

which is face tracking, are still done with one camera only.

This is due to the fact that, unlike in human brains, the rela-

tionship between the images observed by two arbitrary video

cameras, in many cases, is not known. Recent advances in

projective vision theory however have produced the method-

ology which allows one to compute this relationship. This

relationship is naturally obtained while observing the same

scene with both cameras and knowing this relationship not

only makes it possible to track features in 3D, but also makes

tracking much more robust and precise. In this paper, we es-

tablish a framework based on projective vision for tracking

faces in 3D using two arbitrary cameras, and describe a

stereo tracking system, which uses the proposed framework

to track faces in 3D with the aid of two USB cameras. While

being very affordable, our stereotracker exhibits pixel size

precision and is robust to head’s rotation in all three axis of

rotation.

1 Introduction

We consider the problem of tracking faces using a video

camera and focus our attention on the design of the vision-

based perceptual user interface systems [28]. The main

applications of these systems are seen in HCI, teleconfer-

encing, entertainment, security and industry for disabled

[27, 30].

Being a high-level vision problem, face tracking prob-

lem poses four major challenges: robustness, precision,

speed and affordability. While the last two have become

much less critical over the last few years due to the signif-

icant increase of computer power and decrease of camera

cost, the first two remain unresolved.

The approaches to face tracking can be divided into two

classes: global (image-based) and local (feature-based) ap-✆
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proaches [10, 31]. Global approaches use global cues like

skin colour, head geometry and motion, are more robust,

but cannot be used for pixel-size precision tracking. On

the other hand, local approaches, which are based on track-

ing facial features, can theoretically track very precisely. In

practice however they do not, because they are very unro-

bust, due to the variety of motions and expressions a face

may exhibit.

While for humans it is definitely easier to track objects

with two eyes than with one eye, in computer vision face

tracking is usually done with one camera only. A few au-

thors do use stereo for face tracking [14, 15, 20, 29]. They

however use the second camera mainly for the purpose of

acquiring the third dimension rather than making tracking

more robust, precise or affordable. In fact, conventional

stereo setups are usually precalibrated and quite expensive.

The problem is that human brain knows and makes use of

the relationship between the images while processing them

[2, 3], while computers do not. Recent advances in computer

vision though provided the methodology based on projective

vision that allows one to compute this relationship for any

two cameras [9, 23]. This relationship is naturally obtained

while observing the same scene with both cameras and is

represented by the fundamental matrix which relates the two

images to one another.

This paper describes how to use the projective vision

techniques for tracking faces with two arbitrary cameras.

The most significant result is that computing the fundamen-

tal matrix not only allows one to recover the 3D position

of the object with low-cost cameras, but also makes track-

ing much more robust. Combining the proposed projective-

vision-based tracking approach with the robust convex-

shape nose tracking technique described in [5] allowed us to

build a stereo tracking system, which is able to track faces in

3D using two generic USB cameras. The robustness of the

system, the binary code of which can be downloaded from

our website, is such that the rotations of a head of up to 40

degrees in all three axis of rotation can be tracked.

The paper is organized as follows. After presenting

the outline of our framework for affordable stereotracking

(Section 2), we recap the projective vision properties which

make the framework possible (Section 3). This is followed
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Figure 1: Stereo tracking with two web-cameras. The key issue is

finding the relationship between the cameras.

by the description of the stereo selfcalibration procedure

(Section 4). Then we describe the tracking procedure of the

framework and present the experimental results (Section 5).

2 Stereo system setup

In order to present a framework for doing stereo tracking

with two arbitrary uncalibrated cameras, we will describe

the StereoTracker developed by our group, where this frame-

work is implemented.

The StereoTracker allows a user to do high-level vi-

sion tasks with off-the-shelf vision equipment. It tracks the

face of a user in 3D with the aid of two ordinary USB web-

cameras and consists of three major modules: 1) stereo self-

calibration, 2) facial features learning and 3) feature track-

ing. The setup of the system is the following.

A user mounts two USB cameras on the top of the com-

puter monitor so that his face is seen by both cameras (see

Figure 1), after which the user runs the selfcalibration mod-

ule of the StereoTracker to acquire the relationship between

the cameras. For this the user captures his head at the same

time with both cameras at the distance to be used in track-

ing (Figure 2). When the stereo calibration information has

been calculated, the StereoTracker makes use of it to learn

robust facial features (Figure 3), and then makes use of it

again while tracking the features in 3D (Figure 4).

Before proceeding to the description of the calibration

procedure, which is the basis of our stereotracking frame-

work, we need to describe notations and properties to be

used throughout the paper.

3 Projective vision interlude

3.1 Points, lines and calibration matrix.

According to the projective paradigm, every 2D pixel ✞✠✟✡ ☛✌☞✎✍✑✏✓✒
of an image is as associated with the 3D vector ✔✕✟✡ ✖✗☞✙✘✚☞✄✛✄✏ ✒

which starts at the camera origin and goes though

to all 3D space points which are projected to the same pixel

on the image plane.1 A line in an image is represented by

3D vector ✜ which is perpendicular to all points ✔ belonging

to the line: ✜ ✒ ✔✢✟✤✣ .

The relationship between vector ✔ and pixel position ✥
of a point in the image is expressed as

✔✦✟★✧★✩✞✫✪ (1)

where ✩✞ denotes a 3D vector obtained from a 2D vector ✞
by adding one as the last element. Matrix K in this equation,

the simplified form of which is written below, is termed the

calibration matrix of the camera. It describes the intrinsic

parameters of the camera, the most important of which are

the center of the image ✬ ☛✎✭✮☞✯✍✰✭✲✱ measured in pixel coordi-

nates, and the focal length of the camera ✳ , defined as the

distance from the camera origin to the camera image plane

measured in pixels:

✧✴✟ ✵✶ ✳ ✣ ☛ ✭✣ ✳ ✍ ✭✣ ✣ ✛
✷✸ ✪ (2)

Computing the calibration matrix of the camera consti-

tutes the calibration process of the camera. The goal of self-

calibration is to compute this matrix directly from an im-

age sequence without resorting to a formal calibration pro-

cedure. One of the ways to do this is by using the concept

of the fundamental matrix.

3.2 Stereo and fundamental matrix

When a 3D point ✹ in space is observed by two cameras,

it is projected to the image plane of each camera. This gen-

erates two vectors ✔ and ✔✻✺ starting from the origin of each

camera. These vectors are related to each other through the

equation ✔ ✒✗✼✾✽❀✿ ✔ ✺ ✟★✣ ☞ (3)

where
✼

is the translation vector between the camera posi-

tions and
✿

is the rotation matrix. This equation simply

states the fact vectors ✔ ,
✼

and ✔✻✺ are coplanar. In computer

vision, this equation is known as the epipolar constraint and

is usually written as

✔ ✒❂❁ ✔ ✺ ✟✤✣ ☞ where (4)❁❄❃ ✼❅✽❆✿
is termed the essential matrix ✪ (5)

The epipolar constraint holds for any two camera setup

and is very important for 3D applications, as it defines the

relationship between the corresponding points in two cam-

era images. For hand made stereo setup with off-the-shelf

1Some authors [11, 8] prefer using vector ❇ ❈❊❉●❋✑❉✎❍✲■❑❏ instead of❇ ❈❊❉●❋▲❉ ✁ ■❑❏ in order to avoid the unbalancing of the values.



Figure 2: Images captured by two cameras to be used in selfcali-

bration. They should have enough visual features.

cameras,
✼

and
✿

are not known. If the cameras are uncali-

brated, then matrix ✧ is not known either. In this case, the

epipolar constraint is rewritten, using Eq. 1, as✩✞ ✒✗▼ ✩✞◆✟✤✣ (6)

where ✩✞❖✟ ✡ ✥ ☞◗P❘☞✰✛❙✏✓✒ and ✩✞❂✺❚✟ ✡ ✥❯✺ ☞ ✥✚✺ ☞✰✛❙✏✓✒ define the raw

pixel coordinates of the calibrated vectors ✔ and ✔✻✺ , and ma-

trix
▼

defined as ▼ ❃ ✧ ❁ ✧ ✒
(7)

is termed the fundamental matrix of the stereo.

Computing the fundamental matrix constitutes the cali-

bration process of the stereo setup. Next section describes

this process in detail for the case of low-quality cameras, and

below we describe the properties of the fundamental matrix

to be used in stereotracking.

3.3 Epipolar lines

Given a point ✥ in one image, the fundamental matrix can

be used to compute a line in the other image on which the

matching point must lie. This line is called the epipolar line

and can be computed as ✜●❱❲✟ ▼ ✞❳✪ (8)

It is this piece of extra information that makes tracking

with two cameras much more robust than tracking with one

camera. In order to filter out bad matches, the epipolar er-

ror, defined as the sum of squares of distances of points to

their epipolar lines, can be used [9]. Using Eq. 8, the rela-

tionship between epipolar error ❨ and fundamental matrix
▼

can be derived as❨ ❃★❩❭❬ ✬❪✞ ☞ ✜●❱▲❫ ✱✻❴ ❩ ✺ ❬ ✬❪✞✗✺ ☞ ✜❪❱ ✱✟❵✬●✞ ✺ ✒ ▼ ✞ ✱ ❬❘❛ ❜❝❡❞ ❱▲❢❤❣ ✐✙❥ ❝❦❞ ❱▲❢❤❣❣ ❴ ❜❝❦❞♠❧ ❱ ❫ ❢❤❣ ✐♥❥ ❝❦❞♠❧ ❱ ❫ ❢●❣❣❭♦ (9)

and the following proposition can be used to make tracking

more robust.

Proposition: Provided that fundamental matrix
▼

of the

stereo is known, the best pair of matches ✞ and ✞✗✺ corre-

sponding to a 3D feature is the one that minimizes the epipo-

lar error defined by Eq. 9.

4 Stereo system selfcalibration

The calibration procedure described below is implemented

using the public domain Projective Vision Toolkit (PVT)

[18] and is based on finding the correspondences in two

images captured with both cameras observing at the same

static scene. Because off-the-shelf USB cameras are usually

of low quality and resolution, extra care is taken to deal

with the bad matches by applying a set of filters and using

robust statistics. The description of each step follows.

Finding interest points. After two images of the same

scene are taken, the first step is to find a set of corners or

interest points in each image. These are the points where

there is a significant change in intensity gradient in both

the
✖

and
✘

direction. A local interest point operator [26]

is used and a fixed number of corners is returned. The

final results are not particularly sensitive to the number of

corners. Typically there are in the order of 200 corners

found in each image.

Matching corners and symmetry filter. The next step

is to match corners between the images. A local window

around each corner is correlated against all other corner

windows in the adjacent image that are within a certain

pixel distance [32]. This distance represents an upper bound

on the maximum disparity and is set to 1/3 of the image

size. All corner pairs that pass a minimum correlation

threshold are then filtered using a symmetry test, which

requires the correlation be maximum in both directions.

This filters out half of the matches and forces the remaining

matches to be one-to-one.

Disparity gradient filter. The next step is to perform local

filtering of these matches. We use a relaxation-like process

based on the concept of disparity gradient [12] which mea-

sures the compatibility of two correspondences between an

image pair. It is defined as the ratio❩✮♣rq ✟ts ✉✗✈①✇②✉✗③✗s ④⑤s ✉⑦⑥✙⑧✮⑨⑩ s ☞ (10)

where ✉ ✈ and ✉ ③ are the disparity vectors of two corners,✉❶⑥✙⑧✮⑨⑩ is the vector that joins midpoints of these disparity

vectors, and s❸❷✚s designates the absolute value of a vector.

The smaller the disparity gradient, the more the two

correspondences in agreement with each other. This filter is

very efficient. At a very low computational cost, it removes

a significant number of incorrect matches.

Using random sampling. The final step is to use the filtered

matches to compute the fundamental matrix. This process

must be robust, since it still can not be assumed that all fil-

tered correspondences are correct. Robustness is achieved

by using a random sampling algorithm. This is a “generate



and test” process in which a minimal set of correspondences,

the smallest number necessary to define a unique fundamen-

tal matrix (7 points), are randomly chosen [25, 22]. A fun-

damental matrix is then computed from this best minimal

set using Eq. 6. The set of all corners that satisfy this fun-

damental matrix, in terms of Eq. 9, is called the support set.

The fundamental matrix with the largest support set is used

in stereotracking. Before it can be used however, it needs to

be evaluated, because robust and precise tracking tracking

is possible only under the assumptions that the computed

fundamental matrix correctly represents the current stereo-

setup.

4.1 Evaluating the quality of calibration

The evaluation is done using two ways: analytically - by

examining the size of the support set, and visually - by visual

examination of the epipolar lines.

It has been empirically obtained that for the fundamental

matrix to be correct it should have at least 35 matches in the

support set. If their number is less, it means that either i)

there were not enough visual features present in the images,

or ii) cameras are located too far from each other. In this

case, cameras have to be repositioned or some extra objects,

in addition to the head, should be added in the camera field

of view and the calibration procedure should be repeated.

Figure 3 shows the epipolar line (on the right side) cor-

responding to the tip of the nose (on the left side) as ob-

tained for the stereo setup consisting of two Intel USB web-

cams shown in Figure 1. As can be seen, it passes correctly

through the nose, thus verifying the correctness of the funda-

mental matrix and presenting a useful constraint for locating

the nose in the tracking stage.

4.2 Finding the calibration matrix

Knowing matrix
▼

allows one to compute matrix ✧ . Under

the assumptions that the intrinsic parameters of both cam-

eras are the same, the approach we use is that of [17]. It is

based on the fact that matrix
❁

, defined by Eq. 5 and re-

lated to matrix
▼

through Eq. 7, has exactly two non-zero

and equal eigenvalues. The idea is to find such calibration

matrix ✧ that makes the two eigenvalues of
❁

as close as

possible. Given two non zero eigenvalues of
❁

: ❹ ❜ and ❹ ❬
( ❹ ❜⑦❺ ❹ ❬ ), consider the difference ✬●❹ ❜ ✇❻❹ ❬ ✱ ④❼❹ ❜ .

Given a fundamental matrix
▼

, selfcalibration proceeds

by finding such a calibration matrix that minimizes this dif-

ference. This is an optimization problem which is solved

by dynamic hill climbing gradient descent approach [16]. In

[24] it is shown that this procedure, while quite simple, is

not inferior to more complicated approaches to selfcalibra-

tion, such as those using the Kruppa’s equation [13].

Knowing matrix ✧ and the focal length allows one to

reconstruct spatial relationship of the observed features. For

Figure 3: Learning the features using the epipolar constraints. The

nose feature must lie on the epipolar line.

the tracking process however, this information is not re-

quired.

5 Stereo feature tracking

We use the pattern recognition paradigm to represent a fea-

ture as a multi-dimensional vector made of feature attributes.

In the case of image-based feature tracking, the feature at-

tributes are the image intensities obtained by centering a

specially designed peephole mask on the position of the fea-

ture (as in [6]).

The major advantage of stereotracking, i.e. tracking with

two cameras, over tracking with one camera is that of having

an additional epipolar constraint which ensures that the ob-

served features belong to a rigid body (see Section 3.3). Us-

ing this constraint allows us to relax the matching constraint

used to enforce the visual similarity between the observed

and the template feature vectors. The matching constraint is

the main reason why feature-based tracking with one cam-

era is not robust, and relaxing this constraint makes tracking

much more robust.

5.1 Feature learning

In this work, we are not concerned with automatic detection

of facial features. All features are manually chosen at the

learning stage. During this stage, by clicking with a mouse

a user selects a feature in one of the pair images (see Figure

3). This generates an epipolar line in the other image and

the template vectors of both the selected feature and the best

match of the feature in the other image lying on the epipo-

lar line are stored. The examples of learnt templates can be

seen in Figure 4 underneath the face images. By visually ex-

amining the similarity of these templates, a user can ensure

that the stereo setup is well calibrated and that the epipolar

constraint indeed provides a useful constraint.

Several features can be selected for tracking. However

one of these features must be the tip of the nose. The tip of

the nose is a very unique and important feature. As shown in

[5], due to its convex shape, this feature is invariant to both

the rotation and the scale of the head. If detection of the face



orientation is not required, then robust face tracking in 3D

can be achieved using this feature only.

Other features may include conventional edge-based fea-

tures such as inner corners of the brows and corners of the

mouth. At least two of these features are required in order

to track the orientation of the head. These features are not

invariant to the 3D motion of the head. Therefore, in or-

der to make the tracking of these features robust, the rigid-

ity constraint which relates their positions to the nose posi-

tion is imposed. This constraint is computed while selecting

the features. Another constraint used in stereotracking is

the disparity constraint, which defines the allowable dispar-

ity values for features during the tracking, thus limiting the

area of search. Both the rigidity and the disparity constraints

are computed during the selection of features in the learning

stage and can be engaged or disengaged during the tracking.

5.2 Tracking procedure

Each selected facial feature is tracked using the following

four-step procedure.

Step 1. The area for the local search is obtained using

the rigidity constraint and the knowledge of the nose tip po-

sition. When the rigidity constraint is not engaged or when

the feature is the nose, the local search area is set around

the previous position of the feature. If this knowledge is not

available (as in the case of mistracking), then the search area

is set to the entire image.

Step 2. A set of ❽ best candidate matches ❾✲✞✗❿✲➀ is gen-

erated in both images by using the peephole mask and cor-

relating the local search area with template vector ➁➂❯➃ learnt

in the training. In order to be considered valid, all candi-

date matches are required to have the correlation with the

template feature larger than a certain threshold. In our ex-

periments, the allowable minimum correlation is set to 0.9.

Step 3. Out of ❽ ❬
possible match pairs between two

images, the best ➄ pairs are selected using the cross-

correlation between the images. In our experiments, ❽ is

set to 10 and ➄ is set to 5. Increasing ❽ or ➄ increases the

processing time, but makes tracking more robust.

Step 4. Finally, the proposition of Section 3 is used and

the match pair that minimizes the epipolar error ❨ defined

by Eq. 9, is returned by the stereo tracking system. If the re-

turned match has the epipolar error less then a certain thresh-

old, than the feature is considered successfully tracked. Oth-

erwise, the feature is considered mistracked. The value of

the maximum allowable epipolar error ❨❭➅➇➆r➈ depends on the

quality of stereo selfcalibration and should be determined

during the learning stage by observing the epipolar lines at

different parts of the image. In the experiments presented in

this paper it is set equal to 5 pixels.

When a feature is successfully tracked, its 3D position

can be calculated using the essential matrix
❁

as in [9].

The distance between the cameras can be either measured

Figure 4: The StereoTracker at work. The orientation and scale of

the virtual man (at the bottom right) is controlled by the position

of the observed face.

by hand or set equal to one. In the latter case, the reconstruc-

tion will be known up to a scale factor, which is sufficient

for most applications

5.3 Experiments

The tracked facial features provide the information about

the position and the orientation of the head with respect

to the cameras. This information can be used to control a

2D object on the screen, such as a cursor or a turret in a

aim-n-shoot game (as in [7]), or it can be used to control

a 3D object, examples of which can be found in computer

games and avatar-like computer-generated communication

programs (as in [19]). The StereoTracker system, which we

have developed, allows one to test the applicability of the

proposed stereotracking technique to either of these appli-

cations.

Figure 4 shows two images which are controlled by the

motion of the head. The image on the bottom left is the re-

projection of the detected features onto the 2D image plane.

Our experiments show that by thinking of a nose as a point-

ing device, one can easily pin-point to any pixels on the per-

spective view screen. The system is robust to the rotation of

the head. This makes it possible to draw a straight line with

the nose, represented by the lowest vertex of the triangle in

the figure, by simply rotating the head.

The user interface of the StereoTracker allows one also to

change the perspective view of the features to the top-down.

view. This is used to evaluate the potential of using the third

dimension of the tracked features for controlling the size of

a cursor or another virtual object on the screen. The image

on the bottom right of Figure 4 shows a virtual man, the po-

sition of which in a virtual 3D space is controlled by the mo-



tion of the user’s head; the scale of the man is proportional

to the distance between the features and the camera and the

roll rotation of the man coincides with the roll rotation of

the head.

Due to the robustness of the stereotracking, there is quite

a wide range of head motion which can be tracked. For

example, for the setup shown in Figure 1, the experiments

show that within a range from 20 cm to 60 cm the head is

tracked successfully. The tracking however become less ro-

bust to the rotation of the head, as a user moves further from

the original position.

Another observation is that stereotracking with low-

quality cameras does not allow one to retrieve the pan and

tilt rotation of the head. This however does not come as sur-

prise, if we recall that the depth calculation error due to low

resolution of the image can be as high as 10% of the mea-

sured depth distance depending on the position of the feature

[4, 21].

The user interface of the StereoTracker allows one to

evaluate the robustness, speed and precision of stereotrack-

ing with respect to the internal parameters and constraints

of tracking. These parameters can be changed during the

tracking stage and include already the mentioned minimum

allowable correlation, the number of feature candidates ( ❽ ),

the number of refined matches after cross-correlation ( ➄ ),

maximum epipolar error, and also the size of the area for the

subpixel refinement, which can be used for the features pos-

sessing the continuity property (see [5]), and the maximum

color difference between the stored feature pixel and a pixel

being scanned. The last constraint is due to the fact that

template matching in our system is done with black-n-white

images; adding this constraint allows us to use the colour

information to reduce the number of feature candidates.

In addition, the facial features can be checked in and out

for tracking using the menu of the program. The disparity,

rigidity and epipolar constraints can also be engaged and

disengaged using the menu. While tracking is performed,

the StereoTracker outputs statistics such as minimum and

maximum values of correlation, cross-correlation and epipo-

lar errors of the detected features as well as the detected 3D

position and roll orientation of the head and the position of

the cursor controlled by the head.

While the paper presents only the snapshots of our ex-

periments, full MPEG videos of the StereoTracker at work

are available at our website. The binary code of the program

can also be downloaded from the website. In order to run it,

a user will only have to have two USB webcams connected

to a computer. In our experiments, we used two Intel USB

web-cameras. Other USB webcams, such as Logitech, Cre-

ative and 3Com, were also tried. Accessing the images is

done using the DirectX interface. The resolution of the im-

ages is 320 by 240. Lower resolution of 160 by 120 was also

tried and found to be sufficient for precise and robust track-

ing. Image smoothing is done using the Intel Open Source

CV library [1]. On a Pentium III 800 MHz processor, all

processing takes 0.10 ms per frame in average. This allows

one to do stereo face tracking in real time.

Figure 5 shows a typical range of head motion which is

tracked using our framework along with the position of 2D

and 3D objects controlled by the head motion: tilt motion

(a), pan motion (b), roll motion (c), and motion further from

the cameras (d). Yellow boxes around the features show the

areas for local search of the facial features. Using three fea-

tures is found most optimal for recovering the orientation

of the head; inner corners of the brows being more prefer-

able to track than corners of the mouth. Using five features

slowed down the processing and often resulted in breaking

the rigidity constraint. The figure shows well the precision

and the robustness of stereo tracking. By switching on and

off the epipolar constraint, we were able to observe that us-

ing one camera does not allow one to detect features in the

images like those shown in Figure 5.(c)(d), whereas using

two cameras does. In a similar fashion, by switching on and

off the rigidity constraint, we could see how stereotracking

allows one to track robustly even such non-robust features

as corners of the brows.

We have experimented with the different baselines be-

tween the cameras, and the distance of about 10–20 cm ap-

pears to be the most optimal. Larger baselines result in too

few matches needed to compute the fundamental matrix,

while smaller baselines cause large epipolar errors. It was

also observed that the alignment of the cameras is not very

critical for our framework, which is is attributed to using the

rotation invariant convex-shape nose feature and the combi-

nation of the epipolar constraint with the rigidity constraint.

6 Conclusions

In this paper we defined a framework for tracking faces in

3D using two generic web-cameras. The advantages of us-

ing two cameras (two “eyes”) for face tracking, as exhibited

by our StereoTracker, are summarized below. One can track

features:

1. In low quality images. – Low cost plug-n-play USB cam-

eras are used.

2. More precisely, with sub-pixel accuracy. – One can move

the screen cursor with his/her head one pixel at time on a

360x240 grid.

3. More robustly, with respect to scale and rotations. –

Features are tracked for up to almost 40 degrees of rotation

of head in all three directions: “yes”(up-down), “no”(left-

right), and “don’t know” (clockwise).

4. In real time. – After two cameras have been calibrated,

the work of tracking becomes simpler. Calibration can be

done automatically, as soon as the head is seen in both cam-

eras.

5. In 3D. - 3D coordinates and the roll angle of the head are



recovered.

Projective vision and robust statistics enable us to deal

with uncalibrated cameras (i.e. cameras for which the in-

trinsic parameters such as focal length, optical center etc.

are not known), which are the most common cameras on the

market. The gain in the accuracy and robustness is achieved

by using two cameras where only one camera has been used

in the past. It is thus believed that the proposed technol-

ogy brings high-level computer vision solutions closer for

the market.
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Figure 5: Snapshots of experiments showing the robustness and precision of the stereotracking accomplished with two webcams.


