
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Third International Conference on Web Services [Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=e21cc3ca-b180-480d-a887-53fb847a9405

https://publications-cnrc.canada.ca/fra/voir/objet/?id=e21cc3ca-b180-480d-a887-53fb847a9405

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Controlling Remote Instruments using Web Services for Online

Experiment Systems
Yan, Y.; Liang, Y.; Du, X.

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Controlling Instruments using Web Services

for Online Experiment Systems *

Yan, Y., Liang, Y., and Du, X.
July 2006

* published at the Third International Conference on Web Services.

Orlando, Florida, USA. July 12-15, 2006. NRC 48484.

Copyright 2006 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

Controlling Remote Instruments Using Web Services
for Online Experiment Systems

Yuhong Yan1, Yong Liang2, Xinge Du2

1
 NRC-IIT, Fredericton, NB, Canada,

Yuhong.yan@nrc.gc.ca

2
 Faculty of Computer Science, UNB, Canada

{Yong.liang, Xinge.Du}@unb.ca

Abstract
 Online experimentation allows students from anywhere

to operate remote instruments at any time. This promising

e-learning application is well positioned to use Web

Services to conduct online experiment systems due to its

interoperability and Internet compliance. We present a

double client-server architecture for online experiment

systems and the methodology to wrap the functions of

instruments into Web Services. We propose that the

instrument Web Services should be stateful services and

we present the framework to manage the states of the

instrument web services. We benchmark the performance

of this system when using SOAP as the wire format for

communication and propose solutions to optimize

performance.

1. Introduction

In the scope of e-learning, the goal of online

experiment systems is to provide the ability for students
to conduct experiments via the Internet. Online
experiment systems can provide easy access to
experiments for educational institutions that cannot afford
the experimental equipment, and can increase the
effectiveness of online learning. Online experiment
systems are studied in several European projects, such as
Emerge [5] and Prolearn [13], which involve about nine
universities across Europe. MIT’s weblab [7] is among
several prototypes that provide students access to remote
instruments via web interface. In Canada, the CFI-funded
online lab at Tele-university offers similar functions [15].

Based on the functions of the online laboratories,
online experiment systems can be classified as virtual
laboratories that provide a simulation environment of the
experiments, and remote laboratories that allow students
to operate the remote instruments via a graphical user
interface (GUI). The online experiment system for the

remote laboratories is studied in this paper. The
technology adapted by the current online experiment
system is based on simple client-sever architecture and
uses off-the-shelf middleware for communication. It is
difficult to connect heterogeneous resources for
experiments using off-the-shelf middleware. Normally, an
online system relies on products from individual
companies, such as National Instruments or Agilent.
WindowsTM is the common operating system for these
instruments. The client side has to install proper software
to operate the remote instruments. The goals of resource
sharing among the online laboratories and easy access via
the web remain unachieved.

Web Services, as the latest technology for distributed
applications, provides a new potential to build online
experiment systems. The most valuable feature of Web
Services for online experiment systems is interoperability.
By sending eXtensible Markup Language (XML) based
Simple Object Access Protocol (SOAP) [19] message to
the remote components, and using Internet protocols, such
as Hypertext Transfer Protocol (HTTP) or Blocks
Extensible Exchange Protocol (BEEP), Web Services
ensures the interoperability of the components on
different platforms and/or implemented in different
programming languages. Other Web Services standards
can also play a role in this application. For example,
Universal Description Discovery Integration (UDDI) [17]
can serve to describe the scattered experimental resources,
and Business Process Execution Language (BPEL) [2]
can be used to organize learning procedures.

Although Web Services has strong advantages on
interoperability, it has intrinsic weaknesses on latency and
scalability because it uses more transport layers. For
online experimentation, this would cause problems
because of the need to transport large volume of data
between the services and the clients. Classic Web
Services are stateless. This also needs to be examined in
this application. Fundamentally, we need to investigate

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

the methodology to wrap the instrument functions as Web
Services. In this paper, we present our results in using
web services for Online Experiment Systems (OES). We
propose a service-oriented architecture for OES and
present the methodology to wrap the functions of
instruments into Web Services. We discuss the
requirements of stateful services and the performance
issues in this application caused by using SOAP. Though
some of the discussions in this paper can be applied to the
e-science domain, we would like to limit the scope of our
applications to e-learning, where the experiments are not
mission-critical and the instruments are standard
commercial products with standard Application Program
Interfaces (API).

This paper is organized as follows: Section 2 presents
the general framework; Section 3 presents the
methodology to wrap the instrument functions as Web
Services; Section 4 discusses the management of stateful
instrumental Web Services; Section 5 benchmarks the
performance of Web Services in this application and
presents the optimization methods to improve
performance; and Section 6 is the conclusion.

2. The Web Service-based Framework for
Online Experiment System

An Online Experiment System (OES) uses the

scattered computational resources and instruments on the
networks for experiments. The online laboratory system
we present here is a web-enabled distributed system. It
has two-fold meanings: the user accesses the online
experiment system via the web interface; and the
heterogeneous resources and devices interoperate with
each other using Web Services protocols. The goals of
this framework are: 1) to share the experimental
resources among different labs via the Internet; 2) to
increase the ability of computation and data-sharing
among different labs, and; 3) to enable users to access
online labs at any time and from anywhere either for self-
learning or for collaborative laboratory work sessions.

Figure 1 shows the double client-server architecture
for an online experiment system. The first client-server
architecture is between the client browser and the web
server associated with the online lab management system.
The user connects to the online laboratory using a web
browser. The web server is used to render the GUI
interface (see the next section) on the web browser. The
second client-server architecture is between the online lab
management system and the scattered resources that are
wrapped as Web Services. The remote services have their
own web server to receive the SOAP requests from the
online lab management system. Web Services are used for
communication between the online laboratory and the
remote resources.

The system works in a series of steps. A service
provider first registers its services in a UDDI registry
server (step 1 in Figure 1). A service requester searches
the registry server and gets all the potential resources. It
selects the proper services based on its own criteria (step
2). The service requester sends SOAP messages directly
to the service provider to invoke the remote service (step
3).

Figure 2 shows the internal structural of the online

laboratory management system. It needs to manage the
local resources on the local area network (LAN) and the
remote resources connected by the Internet. Among the
resources to be managed are the computational resources
which can be managed using Grid Service techniques.
The rest of the resources are experimental instruments
which can be managed by Web Services as described in
the next section. As such, the back-end uses both Grid
Services and Web Services. It uses a web server for the
front-end representation, and has three layers in the back
end. The top layer is the logic layer where the learning
scenarios are defined and the processes are managed. The
learning scenarios are defined in four aspects: learning
objects, a pedagogical model, a media model and
distribution [10]. Among those, the pedagogical model
defines the process of a course. The process is translated

Registry ServerRegistry Server

Online Lab
Management

Web
Server

serviceNserviceN

service2service2

Service1Service1

12

3

SOAP
Messages

Client
Browser

Figure 1. Double client-server architecture for an
Online Experiment System

Grid Container

Service broker

Web service

engine

GSH/GSR

I
N

T
E

R
N

E
T

Sun Solaris

Clusters
HPC

Instruments
Interconnects

PXI, VXI, RS232,

TCP/IP

RTLab

Qnx real time
System

Clients

HTTPS

Hosting environnement

LAN

Planer/

Scheduler

W

E
B

S

E
R

V
E

R

Business Layer

App Server
Web Service

WSDL

Middleware

Jini service

Computing resources
Network connections

Data
Devices

Devices

Devices

I

N
T
E

R
N

E

T

BPEL EngineLearning Scenarios

Srvs lookup

Service

Objects

LDAP

Registration mgr

Figure 2. Online laboratory management

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

directly into Business Process Execution Language
(BPEL). The BEPL engine is a tool to monitor and
control the process automatically. The BEPL engine is
able to automatically invoke remote Web Services. The
activities in a learning scenario may need remote web
services. The Service Broker determines if the services
come from local services (e.g. the blocks under the
“LAN”), or remote external services (e.g. the blocks of
“jini services”, “web services”). The Service Broker
knows the various protocols used for remote services. For
Grid services, it sends the requests to the Grid Service
Handler/Grid Service References (GSH/GSR) in the Grid
Container. The GSH/GSR is a mechanism in Grid
Service to get the reference of the remote objects and
forward the requests to the remote objects. GSH/GSR is
able to invoke the services either in middleware, (e.g.
jini), or in Web Services. Service Broker can also invoke
Web Services without the GSH/GSR interface by sending
the request to the service objects in the application server
(the bottom layer). Service Broker regularly calls the
Service Lookup (“srv lookup” in Figure 2) and updates
the local LDAP with the results. Registration Manager
(“Registration Mgr” in Figure 2) helps to convert
information from a service registry into LDAP. The
bottom layer is the Application Server layer. The
Application Server provides flexible mechanisms to
manage the Service Objects and interface to the Web
Service Engine. Service Objects are some software
components that process the data from remote web
services. See the next section for an example of service
implementation. The Web Service Engine sends the
SOAP message to invoke the remote web services. This
framework works with the computing resources using
Grid protocols, software components using middleware,
and Web Services components. We believe it covers all
the resources needed for online experiments. If Grid
Services will merge with Web Services in the future,
maybe the two lower layers in Figure 2 will, at some
point, be united into one layer. But in our current study,
we find we still need to use different techniques to
manage different resources.

In the following two sections, we discuss how to use
Web Services to control the instruments. Due to the
nature of the instruments, we need to custom design the
Web Services especially for this application. Grid
Services is not suitable for controlling instruments due to
its inflexibility and bounding to computational resources.

3. Wrapping Instrument Operations as Web
Services

A Web Service Description Language (WSDL) [18]

file contains the operations of the web service and the
arguments to invoke operations. When instrument
functions are wrapped as Web Services, the interface of

the instrument web service is described in a WSDL file.
An instrument service needs to provide three kinds of
information: 1) the input/output parameters to operate the
instrument; 2) the information about rendering the GUI of
the instrument panels; and, 3) the metadata about the
instruments. These issues are described individually
below.

3.1 Generic Approach to Wrap Instrument
Operations based on VISA standard

Instrument I/O is a well studied domain for which
industrial standards have been established. Two methods
to control instruments are by using an instrument driver or
by making direct calls to the I/O library. If using an
instrument driver, the user will call functions that cause
the instrument to take some action. If using the I/O
library, the user will control the instrument by sending an
ASCII string to it and reading ASCII strings back from it.
The commonly used languages to operate instruments are
C, C# or Visual Basic. The commonly accepted industrial
standards are Virtual Instrument System Architecture
(VISA) and Interchangeable Virtual Instruments (IVI) [1].
Most commercial products follow these standards. The
purpose of these standards is to enable interoperability of
instruments, which means using common APIs of the
instruments. Therefore, it is possible to generate generic
WSDL interfaces for instruments based on these
standards. The relationship between VISA and IVI is
shown in Figure 3. The individual instruments – Instr. A,
B and C – have their own drivers. These drivers are
wrapped by VISA complaint drivers. The IVI complaint
drivers are built still on the top of VISA standard.

Both VISA and IVI standards operate the instruments
by reading and sending ASCII strings to the instruments.
Compared with VISA, IVI can operate the instrument by
referencing its properties. The IVI standard classifies the
instruments into eight classes. Each class has basic
properties that are shared by all the instruments in the
same class, and extension properties that are unique to the

Instr. A Instr. B Instr. C

VISA / VISA COM

IVI COM

NI 488.2 NI VXI Others…

Figure 3. The relations of the instrument I/O
standards

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

individual instrument. As an example, Table 1 shows the
code to set the frequency of an Agilent Waveform
Generator 33220A to 2500.0HZ, using IVI COM. Table 2
is the code of VISA COM to implement the same
function. Using VISA COM, people do not know the
semantics of the parameters. That is to say, setting the
Frequency or Voltage, people will use the same API.

Table 1. Sample code of IVI COM

Table 2. Sample code of VISA COM

We consider that using the VISA standard, the
methodology of wrapping the instrument services can be
generic to any of the instruments, which means that many
instruments can share the same Web Services interface.
Indeed, using the VISA standard, we need only to define
an operation writeString for sending commands or data to
the instrument. The argument of this operation is always
string, which is the same for any instrument. Table 3 is
the snippet of WSDL for defining the operation of
writeString. Similarly, we can define an operation
readString for getting status or data from the instrument,
which is eliminated from Table 3.

Table 3. The snippet of WSDL to
operate an instrument

In the example in Table 4, we demonstrate how to
operate the waveform generator to generate a sinusoid
waveform. The set of control parameters for the sinusoid
waveform contains “instrument address”, “wave shape”,
“impedance”, “frequency”, “amplitude”, and “offset”. In
order to improve performance by reducing the time taken
to send SOAP messages (ref Section 5), those parameters
are put into one string. This means that only one SOAP
message is transported to pass all the parameters from the
client to the server. After the server gets the string from
the client, it will parse the string according to the
delimiter (here we use “|”) and send the command to the
instrument.

Table 4. Sinusoid waveform parameters
in one string

Although we prefer to use the VISA standard to wrap
the instrument functions, it is also possible to use the IVI
standard. The difference is that each instrument class will
have a common WSDL file in which the operations for
the basic properties of this instrument class are defined.
For instruments having extension properties, the WSDL
has to be generated separately to include the operations
for the extension properties. Therefore, if using the IVI
standard, the interoperability is satisfied if the instruments
are in the same class and if they have the same extension
properties.

3.2 Design the Web GUI for the Instrument

The panel of a remote instrument should be displayed
graphically on a web browser. The user operates the GUI
to control the instruments. The methodology to describe
instrument panels is presented in [6]. The principle is to
design an XML schema which defines the syntax of the
panel of a kind of instruments. An XML file compliant to
the schema describes the panel of an individual
instrument. Then the XML file can be parsed and
rendered at the client side. We use the multimeter Agilent
34401A as an example. A snippet of the XML for its
panel [20] is in Table 5.

 One can see the container panel objects are the
parentFrame, parentPanel and childPanel. A container
object can contain other panel objects, such as labels and
text boxes. A container object has a layout that describes
how to render the objects inside the container. If one is
familiar with java, one can see the objects can be mapped
one by one to the classes in a java swing GUI package.

��������	
��������������������������
��
�����������
� ��

 �
����!���������"��	�
#�
����

$�������

<�
�����

$���$�����	���%�	��&�
#�
����
������
���#$	��$�����	���%�	��&��'	��
�(#����
�����)��
���)�
�����

$����
���!���������"��	�*'�
����

$�������
 <wsdl:message name="writeStringRequest">
 <wsdl:part name="in0" type="xsd:string"/>
 </wsdl:message>
 �!���������"���#�	$��������
��
����#�	$����$�����	���%�	����
#$	$����	+	��	�������
��������
����#'����

$���������	���%�	��&�*'�
���
$�����	���%�	��&�*'�
��)��
��������
����'�#'��
��

$���������	���%�	��&�
#�
���

$�����	���%�	��&�
#�
��)��
�����)�
����#�	$�����
……

</wsdl:definitions>

IAgilent33220Ptr Fgen;
…….
Fgen->Output->Frequency = 2500.0;
…….

"*RST|FUNCtion SINusoid|OUTPut:LOAD
50|FREQuency 2500|VOLTage
1.2|VOLTage:OFFSet 0.4|OUTPut ON";

Fgen->WriteString("FREQuency 2500")

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

Table 5. A snippet of the XML to describe
the panel of Agilent 34401A

Figure 4 shows the principle to display the panel from

its XML description. The XML schema for the Digital
Multimeter is in DMM_GUI.xml. It validates the file
DMM_Agilent_34401A_GUI.xml which defines the GUI
for the Aglient 34401A. The JAXB is used to parse
DMM_Agilent_34401A_GUI.xml. Then a java servlet is
used to display the panel object on an HTML page. The
generated GUI page is displayed on the right bottom
section of Figure 4.

In the double client-server architecture, the XML files
are at the instrument service site, and can be downloaded
to the online laboratory management system (see the
previous section). The java servlet for rendering the GUI
resides in the web server for the online laboratory
management system. The client of the end user only
requires a normal web page. Therefore, we have a thin
client. If we need to show arbitrary shapes, such as
waveforms, it is a little more complex. There are two
options. If we want to achieve zero installation at the

client side, i.e. no code to be installed, we can generate a
jpg image for the waveform. This is a mature technology.
If we allow the client side to use applets (for java) or
activeX control (for windows platform), we have a thicker
client. This requires simple coding.

3.3 Interfaces of Meta Information.

The IEEE Learning Object Metadata (LOM) standard

defines metadata for a learning object [8]. LOM is
designed for the objects of an online course. It includes
information such as the author, the organization, and the
language. Though we can view an experiment as a course,
which also has the tutorial material and assignment, we
need other special information to describe the status of an
instrument. In [3], the LOM standard is extended for
experimentation context. For operating an instrument, two
additional types of information, the availability and the
quality of services (QoS), are required.

The LOM information is defined in an XML file. In
the WSDL, we define the operation, getLOMMetaData,
to download the information.

The availability is important for booking the service.
We have an operation, getAvailabilityInfo, to get this
information. The user can list all the available timeslots
during a time interval, or query if the instrument is
available for a specific time period.

Table 6. The operations to get metadata
information in WSDL

QoS information is accumulated from history and can
become an important selling and differentiating point of
Web Services with similar functionality. We record the
successful connecting rate to the instrument, the response
time to the instrument, and customer’s rating to use its
service. QoS information is used when selecting available
instruments for an experiment. The higher QoS of the
instrument service, the more likely the OES selects this
instrument or recommends it to the user to use. The
operation getQoSInfo, is designed for this. Table 6
displays these operations in WSDL. These operations are

�#$	���	$���#$	���	$��,$����������
��	
��	�����
 ��#$	���	$��-$(�'��� ��)#$	���	$��-$(�'����
�)#$	���	$����
�#$	��.$���#$	��.$��,$��������	
���	����
 ��#$	��.$��-$(�'��������������
�)#$	��.$�
�-$(�'�� �
�#$	��.$��/���
��� �)#$	��.$��/���
����
�)#$	��.$����
��"���.$����"���.$��,$���������

���
��	�������
���������	����
 ���"���.$��-$(�'��� ��)�"���.$��-$(�'���
������#������$

,$������������
 �����������#���,$���� ��)���#���,$�����
��������� �
 ��)���#�����
��� �
�)�"���.$����

�!���������"���#�	$��������
��
����#�	$����$������
�����
���
����
����
����'�#'��$������
�����
������	�����
 ��)�
����'�#'���
�!���������"���#�	$��������
��
����#�	$����$������
 !������
�"	#����
����
����'�#'��$������
 !������
������	�����
 ��)�
����'�#'���
�!���������"���#�	$��������
��
����#�	$����$������
$�%"	#����
����
����'�#'��$������
$�%�����	�����
 ��)�
����'�#'���
�
�)�
����#�	$�����

<xml>

<….>

</xml>

<xsd>

<….>

</xsd>

API Java

validates

uses

generates

XSD file (DMM_GUI.xsd)XML file (DMM_AGILENT_34401A_GUI.xml)

JAXB Java architecture for XML Binding

From IVI specifications
(Interchangeable Virtual
Instrument)

Java Servlet

GUIBuilder

analyze

JPanel � <table …>

JButton � <input type=“button” …>
JCheckBox � <input type=“checkbox” …>
JTextPane � <input type=“text” …>

JComboBox � <select …><option>…

Figure 4. The principle to display instrument
panel from its XML description

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

out typed operations (i.e. only have response SOAP
message).

4. Managing Stateful Instrument Web
Services

Instrument Web Services involve remotely operating

real devices in real time. Improper design of the Web
Services can cause damage to the instrument, and can lead
to false measurement and control, which in turn will result
in failure of the online experiment. In [20], we present the
special requirements for the instrument Web Services,
such as reliability mechanisms and communication
strategies. By using proper software technologies, these
requirements can be satisfied. In the following sub-
sections, we will focus on how to manage the instruments
as resources.

4.1 Stateful Service for Stateless Resources.

It is well known that classic Web Services is stateless,

i.e. it does not maintain states between different clients or
different invocations. HTTP, the commonly used
transport protocol for Web Services, is a stateless data-
forwarding mechanism. There are no guarantees of
packets being delivered to the destination and no
guarantee of the order of the arriving packets. Classic
Web Services are suitable for services providing non-
dynamic information. In this subsection, we discuss if
additional effort is needed to manage the instrument Web
Services.

An instrument itself is a stateless resource. This is
because an instrument itself does not record client
information or invocations. Indeed, an instrument acts in a
reactive way. It receives commands, executes them
accordingly, and returns the results. If we say an
instrument has “states”, these are the parameters of its
working mode, which have nothing to do with the states
of a web service.

An instrument can only be occupied by one user at a
time. Unlike the resources in Grid Services, instruments
can only accept one user at a time because an instrument
needs to be set to a specific working mode before it can
work for a certain experiment. Normally it is not possible
to recover an instrument’s status without a proper
procedure, so many mechanisms in Grid Services are not
useful in our application. The use of an instrument is
booked by time slots. On some occasions, the tasks of an
instrument can be managed by a queue [7].

An instrument normally does not need reliable
communication. For real time control, only the current
status matters. Past observations are not relevant. So
instead of using the reliable communication mechanism to
adjust the loss, errors or congestion, it is often better to
send the latest data instead of re-sending the old data [16].

An instrument service needs to be stateful for two
reasons. It must be stateful when it needs to record the
operations from one user for payment accounting or to
control how the user can use this instrument, and also
when the results need to be transported among several
resources asynchronously. In the next subsection, we
present a method to build the stateful instrument web
services.

4.2 Design the Stateful Service for Instrument
Resources

As stated previously, we know that the instrument

service has to identify clients and maintain a history of the
operation. This kind of stateful service is different from
the available stateful framework in Grid Services and
WSRF. We design the stateful service for instrument
resources as in Figure 5. The states are managed by the
resource management layer. The client ID is transferred in
SOAP to identify the states of the services. In detail:

(1) The client sends the request to the web service. The
request should contain the ID of the client to identify the
session.

(2) The web service returns the identifier of the
reference.

(3) The client always contacts the service using the
resource identifier.

(4) – (5) The online experiment is executed and the
results are returned to the Web Service.

(6) The Web Service records the results in a proper
manner and returns the results to the client.

Compared to Grid Services, no service factory is
needed, because an instrument service is a single user
service, thus no service instances are created. Compared
to WSRF, the resource itself remains stateless because it
can be changed. The web service adds a layer to manage
the states. The state management can be implemented by
using a database.

Figure 5. The stateful service for instrument
resources

5. The performance Issues for Web Services for
Online Experiment

6
Service

Requestor

3
2
1 Web

Service

A

Resource
Management

B

C

4

5
online instrument

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

The trade-off of the high interoperability of Web

Services is its lower performance. Web Services have
intrinsic performance weaknesses for two main reasons:
there are more transport layers than for middleware; and
the overhead of using SOAP. Many researchers have
analyzed the problem of SOAP efficiency and identified
some factors that can affect the latency performance of
Web Services and SOAP [9][10][14]. For each factor that
could cause the latency, there are some proposed methods
to improve the performance. In this paper, we benchmark
the SOAP efficiency in this context and propose the
solutions to improve performance.

5.1 Benchmark of Latency

This benchmark test is aimed at determining the time

to transport a service request from the requester to the
provider. The time involves marshalling the SOAP
message and binding it to the HTTP protocol at the
request side, and the transportation time and decoding
time on the service side. This test takes place when the
instrument web service and the OES are on the same host,
thus, the delay by the Internet is not considered. In
Section 3, we described that instruments accept ASCII
strings as input according to VISA and IVI standards.
Therefore we use ASCII strings for encoding a volume of
the floating numbers in SOAP message. In our test, we
assumed each of the floating numbers had 16 digits to
provide adequate precision. Therefore the size of the
strings for floating numbers is directly proportional to the
number of digits. We measured the time delay starting
before the call of the service and ending as the request
reaches the service endpoint.

0

500

1000

1500

2000

2500

0 40000 80000 120000 160000 200000

Number of Data Point Per Message

T
ra

n
s
p
o
rt
in

g
 T

im
e
 (
m

s
)

Figure 6. The delay vs. number of data point

Figure 6 shows the relation of the delay time vs. the
number of data points per message. One can see that the
delay increases quasi-linearly as the data points increase.

There is also a basic overhead for the transportation,
which is primarily the time for setting up the TCP/IP
connection.

5.2 Optimize the SOAP Efficiency

Latency of SOAP message is caused by the time of
transportation, which is proportional to the size of SOAP,
and the delay caused by the TCP/IP layer.

The most straightforward method of optimization is to
reduce the SOAP message size by extracting the string
out of the XML, compressing it into binary format (we
use ZIP compression format here) and sending it as an
attachment. The size of the payload is reduced to
approximately 40 to 50 per cent of its original size. The
SOAP messaging protocol supports Multipurpose Internet
Mail Extensions (MIME) or Direct Internet Message
Encapsulation (DIME) attachments. The difference is that
MIME is designed to provide flexibility, while DIME is
designed to be simpler and to provide more efficient
message encapsulation. The results of applying different
attachment approaches are shown in Figure 7. One can
see that the transportation time can be reduced
dramatically by compressing the SOAP content.

0

500

1000

1500

2000

2500

0 50000 100000 150000 200000

Number of Data Per Message

T
ra

n
s
p
o
rt
in

g
 T

im
e
 (
m

s
)

String in xml

MIME Att.

MIME Att.(zip)

DIME Att.(zip)

Figure 7. Different methods to send string data

through SOAP

We can also optimize the underlying HTTP and TCP
protocols for SOAP messaging. We present the possible
methods below without testing results:

Persistent HTTP Connection. Persistent connection
could “keep-alive” a connection and save the time needed
to establish HTTP connection every time. For HTTP 1.0,
the persistent connection works only if there is no proxy
between the client and server. For HTTP1.1, the persistent
connection can be used with more than one proxy
between a client and a server.

Disable Nagle Algorithm and Remove TCP Delay
ACK. The Nagle algorithm in combination with the TCP
delayed ACK (the acknowledge response in TCP) are
used to prevent network congestion [10], but they cause

3rd International Conference on Web Service, Orlando, Florida, USA, July 11-15, 2005, p725-732.

unnecessary delays when sending a SOAP message [4]. It
is possible to disable Nagle on both the server and client
side to get considerable improvement for the response
time.

Better Pipelined Connection by Using HTTP 1.1.
The use of HTTP inherits some of the TCP features such
as the three-way handshake. This can cause delays.
HTTP1.1 attempts to solve these problems. The result
shows that HTTP1.1 can reduce the RTT (Round Trip
Time) to half of HTTP1.0 implementation [11].

6. Conclusions

In this paper, we propose to wrap the remote

instruments as Web Services for online experiment
systems. The advantage of Web Services is its inter-
operability across platforms and programming languages.
Its trade-off is low efficiency caused by SOAP
messaging. This paper covers the essential issues to build
such instrument Web Services, such as WSDL design,
stateful service management and performance issues. The
future work would be to continue optimizing the SOAP
messaging and to analyse the resource description and
integration issues.

References

[1] Agilent Inc. About Instrument I/O
http://adn.tm.agilent.com/index.cgi?CONTENT_ID=239, 2005.
[2] Andrews, T., F. Curbera, et al., (2004), Specification:
Business Process Execution Language for Web Services Version
1.1, http://www-128.ibm.com/developerworks/library/ws-bpel/
[3] Bagnasco, A., M. Chirico, A. M. Scapolla, (2002) XML
Technologies to Design Didactical Distributed Measurement
Laboratories, IEEE IMTC2002, Anchorage, Alaska, USA.
[4] Elfwing, R., U. Paulsson, and L. Lundberg, (2002),
Performance of SOAP in Web Service Environment Compared
to CORBA, Proceedings of the Ninth Asia-Pacific Software
Engineering Conference (APSE’02), 2002, IEEE.
[5] Emerge Project Homepage, http://www.emerge-
project.net/evaluation.htm, 2004.
[6] Fattouh, B. and H. H. Saliah, (2004), Model for a Distributed
Telelaboratory Interface Generator, Proceedings of Int. Conf. On
Engineering Education and Research, Czech Republic, June 27-
30, 2004.
[7] Hardison, J. D. Zych, J.A. del Alamo, V.J. Harward, et al.,
The Microelectronics WebLab 6.0 – An Implementation Using
Web Services and the iLab Shared Architecture, iCEER2005,
March, Tainan, Taiwan.
[8] IEEE Learning Technology Standards Committee, (1999),
IEEE 1484 Learning Objects Metadata (IEEE LOM),
http://www.ischool.washington.edu/sasutton/IEEE1484.html.
[9] Kenneth Chiu, Madhusudhan Govindaraju, Randall Bramley,
“Investigating the Limits of SOAP Performance for Scientific
Computing”, 11th IEEE international Symposium on High
Performance Distributed Computing HPDC-11, 2002.

[10] Litou, M., (2002), Migrating to Web Services – Latency
and Scalability, Proceedings of Fourth Int. Workshop on Web

Site Evolution (WSE’02), 2002, IEEE.
[11] Nielsen, H., J, Gettys, A. Baird-Smith, E. Prud'hommeaux,
H. Lie, and C. Lilley, (1997), Network Performance Effects of
HTTP/1.1, CSS1, and PNG,
http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html,
June 1997.
[12] Paquette, G., (1999), Meta-knowledge Representation for
Learning Scenarios Engineering, Proceedings of AIEd'99, Le
Mans, France, July, 1999.
[13] Prolearn Project Homepage, http://www.prolearn-
project.org/, 2005.
[14] Robert A. van Engelen, Pushing the SOAP Envelop With
Web Services for Scientific Computing, in the proceedings of
the International Conference on Web Services (ICWS), 2003,
pages 346-354.
[15] Saliah-Hassane, H., D. Benslimane, I. De La Teja, B.
Fattouh, L. Do, P. Gilbert, M. Saad, L. Villardier, Y. Yan, A
General Framework for Web Services and Grid-Based
Technologies for Online Laboratories, iNEER Conference for

Engineering Education and Research, March, 2005, Tainan,
Taiwan. (Invited Paper)
[16] Salzmann, C., and D. Gillet, (2002), Real-time Interaction
over the Internet, Proceedings of IFAC2002.
[17] UDDI.org, (2004), UDDI homepage,
http://uddi.org/pubs/uddi_v3.htm
[18] W3C, (2004b), WSDL Specification,
http://www.w3.org/TR/wsdl
[19] W3C,(2004a), SOAP Specification,
http://www.w3.org/TR/soap12-part1/

[20] Yan, Y., Y. Liang, X. Du, H. Saliah-Hassane, A. Ghorbani,
"Design Instrumental Web Services for Online Experiment
Systems", Ed-Media 2005, Montreal, June 27-July 2, 2005,
Montreal, Canada (accepted).

