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Abstract 

This paper presents a truecasing technique - that is, 
a technique for restoring the normal case form to an 
all lowercased or partially cased text. The technique 
uses a combination of statistical components, 
including an N-gram language model, a case 
mapping model, and a specialized language model 
for unknown words. The system is also capable of 
distinguishing between “title” and “non-title” lines, 
and can apply different statistical models to each 
type of line. The system was trained on the data 
taken from the English portion of the Canadian 
parliamentary Hansard corpus and on some 
English-language texts taken from a corpus of 
China-related stories; it was tested on a separate set 
of texts from the China-related corpus. The system 
achieved 96% case accuracy when the China-
related test corpus had been completely lowercased; 
this represents 80% relative error rate reduction 
over the unigram baseline technique. Subsequently, 
our technique was implemented as a module called 
Portage-Truecasing inside a machine translation 
system called Portage, and its effect on the overall 
performance of Portage was tested. In this paper, 
we explore the truecasing concept, and then we 
explain the models used.  

1. Introduction 

Many natural language processing engines output 
text that lacks case information – by convention, 
usually in lowercase. For instance, Portage-
Truecasing is incorporated in a machine translation 
system called Portage whose initial translations are 
generated in lowercase format. Thus, to complete 
the translation task, the system needs a truecasing 
module that will change some of the characters in 
the initial translation to uppercase. Systems that 
carry out named entity recognition, spelling 
correction, and grammar correction may also 
require truecasing modules to function properly.  

To illustrate the use of truecasing, consider the 
following example. Let us assume that an 
automatic speech recognition or machine 
translation system outputs the sentence “sir john a 

macdonald drank old covenanter whiskey”.  The 
sentence is much easier to read and to understand 
in its truecase form: “Sir John A MacDonald drank 
Old Covenanter whiskey”. In this version, “Sir 
John A MacDonald” and “Old Covenanter” are 
clearly understood to be names. (After truecasing, 
the typical next step is punctuation insertion). 

Few people have worked on this problem. The 
most recent papers are by Chelba and Acero [2] 
and by Lita et al. [5]. Chelba and Acero’s 
technique is based on maximum “a posteriori” 
(MAP) adaptation of Maximum Entropy Markov 
Models (MEMMs) to solve this problem. These 
authors obtained a 35-40% relative improvement 
for the baseline MEMM over a 1-gram baseline, 
and a 20-25% relative improvement for the MAP-
adapted MEMM over the baseline MEMM (in tests 
done on Broadcast News data). Lita et al. [5] used 
a truecasing approach based on trigram language 
modeling. They obtained relative error rate 
improvement over a unigram baseline of about 
50% (from 96% accuracy to 98%) on a news 
articles from which titles, headlines, and section 
headers had been excluded, and an even greater 
relative error rate improvement of about 66% 
(from about 94% accuracy to about 98%) over the 
baseline on a test corpus comprising titles, 
headlines, and section headers. Finally, Mikheev’s 
work [1] targeted the parts of a text where 
capitalization is expected, such as beginning of 
sentences and quotations. Similarly, Kim and 
Woodland [3] used rule-based techniques to 
generate punctuation and beginning of sentence 
capitalization for speech recognition outputs. 

We began by implementing a unigram baseline 
system that yielded 19.35% case error; 
implementation of a trigram-related model similar 
to that of Lita et al. lowered this to 5.24% (relative 
error rate reduction of 73%). Careful study of the 
problems seen on a development set showed that 
many of the errors came from titles, and from 
“unknown” words – i.e., those encountered during 
testing but not during training. Thus, we extended 
the basic approach by incorporating a title 



detector which attempts to label lines as being 
either “title” or “non-title”. This gives us the 
option of training separate title and non-title casing 
models for application at runtime. In addition, we 
grouped “unknown” words into four classes. For 
each such class, the case probabilities are 
determined from the cases of low-frequency words 
in the training data that fall into that class.  

The language models described in this paper were 
trained using the SRI Language Modeling Toolkit 
(SRILM). Since one of the goals of this work was 
to improve the performance of a machine 
translation (MT) system participating in a NIST 
MT task, much of the training data was drawn 
from the 2004 NIST “Large” Chinese-English 
training corpus. This “C/E” corpus includes texts 
from a variety of China-related sources. Additional 
training material was drawn from the Canadian 
parliamentary Hansard corpus. The test data were 
the 2004 NIST C/E evaluation data. 

The metric employed for the C/E MT NIST task is 
BLEU (see Papineni et al. [4]), which measures the 
similarity of the translation system’s output with 
one or more reference translations. In this paper, 
we measure the performance of the truecasing 
module both by how accurately it assigns case to 
normal text that has had case information removed, 
and by its effect on BLEU. We define “case 
accuracy” per word - a case error in a single 
character of a word is counted as a case error for 
that word. The goal of optimizing performance 
according to one of these metrics may conflict with 
optimizing performance according to the other. 
Suppose that the MT system outputs “elephants in 
africa mostly has long nose” and the truecasing 
module converts this to “elephants in Africa 
mostly has long nose”. We might be tempted to 
add a rule to the truecasing module that imposes 
uppercase for the first letter in every sentence. 
Though this rule might help performance 
according to the “case accuracy” metric, it may 
hurt the BLEU score. In the example, if the 
reference sentence were “Most elephants in Africa 
have long noses”, BLEU will assign a higher score 
to “elephants in Africa mostly has long nose” than 
to “Elephants in Africa mostly has long nose” 
(because the form of “elephants” in the reference is 
all-lowercase).  

The layout of this paper is as follows: section 2 
will outline the problem, section 3 will describe the 
statistical models, section 4 will describe the 

experiments and their results, and section 5 will 
discuss these results.  

2. The Problem of Truecasing 

The truecasing problem is not obvious until one 
faces a real example. Consider the sentence 
“indian paratroopers will command a joint alpha-
tango military exercise with the special forces of 
the us pacific command”. In languages employing 
the Latin alphabet, a sentence typically begins with 
uppercase. Therefore, “indian” should be “Indian” 
with little ambiguity. The word “us” could remain 
lowercase but the word sequence “us pacific 
command” suggests that the all-uppercase form 
“US” is more likely. Thus, word context can 
provide clues to case. In a syntactic approach, 
some aspects of context could be exploited by 
means of Part-Of-Speech (POS) tagging. For 
instance, the tagger might tag “the us pacific 
command” as “the <noun phrase>” and use the 
information that “us” is part of a noun phrase to 
generate “the US Pacific Command”.  

At the beginning of our work on truecasing, we 
investigated the distribution of the casing errors of 
a unigram truecaser. This system, which was used 
as the baseline in subsequent experiments, assigns 
to words observed in the training data the most 
frequent case observed. New words seen in the test 
data for the first time – the so-called “unknown” 
words - are left in lowercase. The resulting error 
distribution is plotted below (with words of similar 
frequency in the training corpus binned together). 

Case Error distribution = f(word count in bin)
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Figure 1: Case error distribution of the baseline 

truecaser as a function of word count in our 
training corpus 

The point marked “unknowns” appears for 
convenience on the y axis (though its true x 
coordinate is not 0 but -�); it represents words 



appearing in the test data that were not seen in the 
training data. It is not surprising that these words 
have a higher case error rate than the words of 
count 1: the baseline system has not learned 
anything from the training data about the 
“unknown” words. At the high end of the x axis, 
we see that a few very frequent words such as 
“the” also have a high error rate. This is partly 
because of tokenization problems (e.g., “the” 
sometimes has a hyphen glued to the end of it, or a 
quotation mark glued to the front of it) and partly 
because “the” and similar words often appear in 
titles, which are particularly tricky.  

In the truecasing approach we used (similar to [5]), 
an N-gram language model (LM) is used to model 
the contextual information. In the example, if the 
trigram “US Pacific Command” has often been 
seen, then the system will be inclined to carry out 
truecasing correctly. The “case mapping” model 
smooths the N-gram model. If (for instance) the 
erroneous sequence “will Command a” occurred 
once in the training data, this smoothing ensures 
that an occurrence of “command” preceded by 
“will” and followed by “a” will still receive the 
correct all-lowercase form in the system’s output. 

We need a third kind of model to deal with 
“unknown” words – i.e., those that were not 
observed in the training data. In the example, it is 
quite likely that no form of “alpha-tango” (a rare 
military code word) has been observed. 
Nevertheless, the “unknown word” model we 
provide will be capable of converting it to the 
correct form, “Alpha-Tango”.  

3. Scoring Function and Models 

We gave in chapter 2 some motivations for three 
sub-models. To use the specific contribution of 
each sub-model, we combine them into a scoring 
function � formulated by Eq.1. The sub-models 
are: 

- An N-gram model called �N to capture the 
contextual information surrounding a word; 

- A case mapping model called � to capture the 
probabilities for different cases of a word; 

- An “unknown word” model called � to provide 
for unseen cases. 

1 Eq.Π⊗Φ⊗=Ω Nθ  

3.1 Terminology 

Let S denote a sequence of words si, with case 
information included. Let C() denote the function 
that gives only the casing of a string, and L() the 
function that returns its lowercase form, thus 
leaving only information about the uncased word 
sequence. Let AU denote “All Uppercase”, FU 
“First letter Uppercase”, AL “All lowercase”, and 
MC “Mixed Case”; for S = “USA is an acronym 
for United States of America”, C(S) = AU AL AL 
AL AL FU FU AL FU, and L(S) = “usa is an 
acronym for united states of america”. Truecasing 
is applied when we know L(S) and are trying to 
obtain C(S). If both the case information C(S) and 
the word information L(S) are known for a string 
S, S is completely defined.  

3.2 N-Gram model 
�

N 

One way of estimating the probability that si has a 
particular case C(si) would be to assume 
recursively that we already know the case of the 
words preceding a particular word si in the string S. 
This line of thought leads to the N-gram 
component ✁ N of the truecaser. For instance, for 
N=3, let P✂ 3(C(si) | L(si), si-2si-1) denote the 
probability that the C(si) form of si (rather than 
some other form) occurs after the cased word 
sequence si-2si-1. An example: if L(si) = “america”, 
and that si-2si-1 = “States of”, the trigram-related 
probability of “America” is P✂ 3(C(si)=FU | 
L(si)=“america”, “States of”).  

3.3 Case mapping model ✄  

Another way of estimating the probability that si 
has a particular case C(si) would be to ignore 
context and rely on the case forms observed in the 
training data for si. This leads to the case mapping 
model, P�(C(si) | L(si)). For example, the 
probability of “America” given that some form of 
“america” has occurred is denoted P�(C(si)=FU| 
L(si)= “america”). Using � alone would be 
equivalent to considering the most probable case 
pattern for a word everywhere. This sub-model is 
used to smooth the model ✁ N.  

3.4 Unknown word model ☎  

Finally, the sub-model called � deals with words si 
that weren’t observed in the training data. It was 
constructed by defining classes based on the form 



of a word – for instance, the presence of non-word 
symbols (e.g., internal hyphen). It’s formulated as 

( ) ( )))((|)()(|)( iiii sLClasssCPsLsCP ≈Π  

The conditional probability on the right side above 
is calculated from the case statistics for words that 
belong to the class, and that occur exactly once in 
the training data. Our assumption is that low-
frequency words in a given class tend to follow 
similar patterns of case.  

How should the function Class(L(si)) be defined? 
Depending on the test corpus, the nature of such 
“unknown” words may vary. They include rare 
proper names such as “agbago” and mixed 
alphanumeric expressions such as “$2563US” or 
“675km” or “220kV”. Other forms are 
compounded name entities and character sequences 
resulting from words in non-alphabetic languages. 
This last type of “unknown” word sometimes 
occurs in the English portion of the C/E corpus 
when Chinese characters have been inserted in 
English text (e.g., to clarify the meaning of an 
English word to Chinese readers).  

Based on the characteristics of the C/E corpus, we 
decided to define the following “unknown” word 
classes: 

1. quantity words: “unknown” tokens starting 
or/and ending with numbers. Example: 
“us$0.19”, “10kV”, “rmb0.308”. 

2. acronyms: “unknown” tokens containing a 
sequence of single letters followed by periods. 
Example: “u.s.”, “u.s.-south”. 

3. hyphenated words: “unknown” tokens made 
up of at least two components joined by a 
hyphen, where each component consists of a 
sequence of alphabetic characters. Example: 
“belarus-russian”, “jong-il”. 

4. regular uniform words: “unknown” tokens 
consisting entirely of alphabetic characters. 
Example: “abesie”, “badeshire”. 

These classes are considered in the precedence 
order just given. Thus, an unknown token is only 
considered for class 2 if it has been rejected for 
class 1, and so on (that’s why “u.s.-south” is 
assigned to class 2 and not class 3). “Unknown” 
tokens not falling into one of these four classes are 
left in all-lowercase form (an example is the 
“unknown” token “cafâ¨â¦” we observed during 

our tests, which results from a word that combines 
alphabetic letters and Chinese characters). 

3.5 Scoring function �  

The ✁ N , � and � components of Portage’s 
truecasing module (defined above) are true 
probabilities. The scoring function � combines 
them in the following way: 

( )
( )

�
�

�
�

�

≈Ω
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Although � defined in this way is not a probability 
because of the product term, it has certain 
advantages (e.g., ease of implementation in the 
SRILM framework). The way � is formulated 
indicates that at the step i, we already know the 
case of the words preceding si in the string S. To 
get a sense of how � works, consider the following 
training text: 

“Akakpo is the son of Agbago. So his name is 
said and written as Akakpo Agbago in Canada 
but Akakpo AGBAGO in Togo. Akakpo 
AGBAGO is unique in Togo. Akakpo is a last 
name for many. Agbago is a good guy. Agbago is 
smart. Agbago is kind.” 

And the following test text: 

“Akakpo agbago” 

Let’s redefine the � component slightly so it’s 
based on bigrams rather than trigrams, and let’s 
ignore smoothing and assume the component 
models use frequencies directly to estimate 
probabilities.  

Then using these training and testing texts, we 
obtain:  

Step i = 1: 

( )

( ) Akakposˆ

""1

1*1

)|(*
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knownisakakpo

akakpoAkakpoP

AkakpoAkakpoPakakpoAkakpo
Nθ

  



Step i = 2: 
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Thus, the scoring function �, if trained on this 
corpus, would tend to predict “Agbago” rather than 
“AGBAGO” after “Akakpo”. This prediction is 
incorrect in Togo, but correct in Canada (and most 
of the English-speaking world) – an example of 
how slippery the notion of correct casing can get.  

We also tried a different approach in which we find 
the cased form that maximizes the trigram 
probability, given the lowercase form and the two 
preceding cased forms. Let S denote the entire 
cased word sequence, and L the corresponding 
sequence of lowercased words. By Bayes’s Law, 
we have 

( ) )(/)(*)|(| LPSPSLPLSP =  

However, by definition we know the lowercase 
word sequence L. Thus, we want to maximize  

( ) )(*)|(| SPSLPLSP ∝  

Substituting in the trigram estimate of P(si), we see 
that at each step we are trying to maximize 

),|(*),,|)(( 1212 −−−− iiiiiii sssPssssLP  

Thus, we search over the cased forms si of L(si) 
observed in the training data to find the one that 
maximizes this expression. For an observed form si 
of L(si), P(L(si)|si-2,si-1,si) will be 1. In initial 
experiments, this approach yielded inferior 
performance to that obtained by using the scoring 
function � above.  

4. Experiments and Results 

We used the SRILM package, along with some 
code we wrote ourselves, to handle the training 
(creation of the language models) and the case 
decoding (also called “disambiguation”). The � 
models are produced in the ARPA N-gram LM 
format and the � and � models in SRILM “V1 to 
V2” mapping format. 
 
The resources used were as follows:  
- Training corpus: contains 366,532,578 tokens 

(~words). 
- Test corpus: contains 451,154 tokens (~words) 

Recall that the training corpus comes from the 
English-language half of the 2004 NIST “Large” 
Chinese-English (C/E) training corpus (which 
includes material from Hong Kong Hansard and 
news sources such as Xinhua News Agency, 
Associated Press, Agence Française de Press, etc.), 
supplemented by material from the Canadian 
Hansard corpus. The test corpus is the 2004 NIST 
C/E test set. 

To the scoring function � described above, we 
added some heuristics. These are: 
•  Junk cleaning: we removed from the training 

data various special tags; also, all lines in which 
most words are uppercased (these turned out to 
be extremely atypical). 

•  Title detection and processing: titles show 
unusual casing patterns. Unfortunately, in 
English there are no explicit rules for casing in 
titles; frequently, casing is left to the whims of 
the author. We implemented a title detection 
module that relied on domain specific aspects 
of our data, which consisted mainly of 
newswire data. For instance, the presence of a 
date, name of a news agency, and “reported by” 
followed by a personal name was taken to 
indicate a title. Used on training data, this 
module makes it possible to train “body only” 
or “title only” models; used on test, it makes it 
possible to apply different models or rules to 
title and body. The best-performing system 
shown in Figure 2 was trained only on the 
portion of the training corpus classified as 
“body” by the title detector. For casing of test 
text, this body-only system was applied both to 
portions of the test corpus classified as “body” 
and as “title”. Then, words in the title that were 
longer than four letters were systematically 
uppercased. It might seem more logical to use a 
model trained on titles to assign case to words 



in titles, but the main characteristic of titles in 
the training text is inconsistency in case 
assignment. Thus, the title detector’s usefulness 
for training is that it enables us to remove titles 
from the training data.  

Portage-Truecasing Case Error Rate evaluation
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Figure 2: performance of Portage-Truecasing 

The performance of Portage-Truecasing is plotted 
in Figure 2 and shows 80% improvement in 
relative error rate over the unigram baseline 
technique, 

☎
 = ✆ 1 (from 19.35% to 3.88%). The 

figure also shows case error by the correct case 
type – e.g., the points above “AU” show error rates 
for words that should be written all-uppercase. 
From the figure, it is clear that the effort that went 
into classifying different types of unknown words 
for the ✝  model and into developing heuristics 
(junk cleaning and title detection) was justified: it 
yielded an improvement of 26% relative (from 
5.24% to 3.88% error). If we do not include the 
heuristics but only ✝ , the improvement is only 
13% relative (to 4.55% case error – this point is 
not shown in the figure 2). Figure 3 provides an 
analysis of Portage-Truecasing errors by word 
count, as was done in Figure 1 for the baseline 
truecaser. 

Portage-Truecaser Case Error distribution = f(word count in bin)

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0 1 2 3 4 5 6 7 8
Log10(word count in bin)

C
as

e 
er

ro
r 

p
ro

b
ab

ili
ty

Case Error Rate

"unknowns"
count=0=>log=NaN

count=1=>log=0

Corpora specific imperfections

 
Figure 3: Case error distribution of Portage-
Truecaser as a function of word count in our 
training corpus 

Since the module is used for machine translation 
(MT), we ran it on the output of the MT system 
and obtained the BLEU results in Table 1. The last 
two columns show that the unknown word model 

✝  helps performance, while the use of heuristics 
causes slight deterioration. As noted earlier, it is 
not surprising that the best-performing system 
according to case error rate (this system includes 
the heuristics) is not the same as the best-
performing system according to BLEU (this 
system does not include the heuristics). For most 
applications, the case error rate is more 
informative.  

Baseline-
Truecaser 
(

☎
 = ✆ 1) 

Portage-
Truecaser 
(

☎
=✆ 3+✞ ) 

Portage-
Truecaser 

(
☎

=✆ 3+✞ +✝  
+heuristics) 

Portage-
Truecaser 

(
☎

=✆ 3+✞ +✝ )

17.98% 23.77% 23.74% 23.83% 
Table 1: BLEU score 

5. Discussion 

In this paper, we presented a module designed as 
part of a machine translation system that uses three 
statistical language models to assign case to a text. 
It reduces the case error rate of a unigram baseline 
truecaser by 80% relative, achieving 96% global 
accuracy on the test corpus. We designed the 
system in a manner that allowed us to quickly test 
different variants; this was fortunate, because the 
best variant according to case error rate and the 
best variant according to BLEU turned out to be 
different.  

Some specific problems we encountered were: 

•  Inconsistency: there was a non-negligible 
proportion of case inconsistencies in training 
and test corpora. This happens because the 
corpora are agglomerations of texts written by 
different people with different formatting styles, 
competences, and working tools. Furthermore, 
not much attention is paid to enforcing casing 
standards, even where these exist. Named 
entities (e.g., “United States Government” vs. 
“United States government”) and titles tend to 
be subject to casing inconsistency.  

•  Portage specific side effects: errors from other 
components of the system, particularly the 
tokenizer, had a strong negative impact on 
performance. 



For future work, we could consider turning scoring 
function 

☎
 into a true probability by interpolating 

the ✆ N and ✞  terms instead of multiplying them – 
i.e., defining it as: 
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Alternatively, we could approximately keep 
☎

 in 
its current form, but incorporate power terms �  and ✁

 that would depend on the frequency of a word 
(where K is a normalization factor):  
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It is interesting to think about how one would build 
a truecaser optimized for MT (i.e., to maximize the 
BLEU score). MT output is not exactly the same as 
regular text. One might consider training the 
truecaser on output from the MT system whose 
words have been assigned case in some other way 
(e.g., by “pasting” onto them case patterns from 
corresponding words in reference data).  
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