
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

International Conference on Recent Advances in Natural Language Processing
(RANLP-05) [Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=eab2cda0-07bf-403a-af3c-835ae30583ab

https://publications-cnrc.canada.ca/fra/voir/objet/?id=eab2cda0-07bf-403a-af3c-835ae30583ab

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Truecasing For The Portage System
Agbago, Akakpo; Kuhn, Roland; Foster, George

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Truecasing For The Portage System *

Agbago, A., Kuhn, R., and Foster, G.
September 2005

* published at the International Conference on Recent Advances in Natural

Language Processing (RANLP-05). Borovets, Bulgaria. September 21-24,

2005. NRC 48515.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Truecasing For The Portage System
Akakpo Agbago, Roland Kuhn, George Foster

Institute for Information Technology, National Research Council of Canada
{Akakpo.Agbago, Roland.Kuhn, George.Foster}@nrc-cnrc.gc.ca

Abstract

This paper presents a truecasing technique - that is,
a technique for restoring the normal case form to an
all lowercased or partially cased text. The technique
uses a combination of statistical components,
including an N-gram language model, a case
mapping model, and a specialized language model
for unknown words. The system is also capable of
distinguishing between “title” and “non-title” lines,
and can apply different statistical models to each
type of line. The system was trained on the data
taken from the English portion of the Canadian
parliamentary Hansard corpus and on some
English-language texts taken from a corpus of
China-related stories; it was tested on a separate set
of texts from the China-related corpus. The system
achieved 96% case accuracy when the China-
related test corpus had been completely lowercased;
this represents 80% relative error rate reduction
over the unigram baseline technique. Subsequently,
our technique was implemented as a module called
Portage-Truecasing inside a machine translation
system called Portage, and its effect on the overall
performance of Portage was tested. In this paper,
we explore the truecasing concept, and then we
explain the models used.

1. Introduction

Many natural language processing engines output
text that lacks case information – by convention,
usually in lowercase. For instance, Portage-
Truecasing is incorporated in a machine translation
system called Portage whose initial translations are
generated in lowercase format. Thus, to complete
the translation task, the system needs a truecasing
module that will change some of the characters in
the initial translation to uppercase. Systems that
carry out named entity recognition, spelling
correction, and grammar correction may also
require truecasing modules to function properly.

To illustrate the use of truecasing, consider the
following example. Let us assume that an
automatic speech recognition or machine
translation system outputs the sentence “sir john a

macdonald drank old covenanter whiskey”. The
sentence is much easier to read and to understand
in its truecase form: “Sir John A MacDonald drank
Old Covenanter whiskey”. In this version, “Sir
John A MacDonald” and “Old Covenanter” are
clearly understood to be names. (After truecasing,
the typical next step is punctuation insertion).

Few people have worked on this problem. The
most recent papers are by Chelba and Acero [2]
and by Lita et al. [5]. Chelba and Acero’s
technique is based on maximum “a posteriori”
(MAP) adaptation of Maximum Entropy Markov
Models (MEMMs) to solve this problem. These
authors obtained a 35-40% relative improvement
for the baseline MEMM over a 1-gram baseline,
and a 20-25% relative improvement for the MAP-
adapted MEMM over the baseline MEMM (in tests
done on Broadcast News data). Lita et al. [5] used
a truecasing approach based on trigram language
modeling. They obtained relative error rate
improvement over a unigram baseline of about
50% (from 96% accuracy to 98%) on a news
articles from which titles, headlines, and section
headers had been excluded, and an even greater
relative error rate improvement of about 66%
(from about 94% accuracy to about 98%) over the
baseline on a test corpus comprising titles,
headlines, and section headers. Finally, Mikheev’s
work [1] targeted the parts of a text where
capitalization is expected, such as beginning of
sentences and quotations. Similarly, Kim and
Woodland [3] used rule-based techniques to
generate punctuation and beginning of sentence
capitalization for speech recognition outputs.

We began by implementing a unigram baseline
system that yielded 19.35% case error;
implementation of a trigram-related model similar
to that of Lita et al. lowered this to 5.24% (relative
error rate reduction of 73%). Careful study of the
problems seen on a development set showed that
many of the errors came from titles, and from
“unknown” words – i.e., those encountered during
testing but not during training. Thus, we extended
the basic approach by incorporating a title

detector which attempts to label lines as being
either “title” or “non-title”. This gives us the
option of training separate title and non-title casing
models for application at runtime. In addition, we
grouped “unknown” words into four classes. For
each such class, the case probabilities are
determined from the cases of low-frequency words
in the training data that fall into that class.

The language models described in this paper were
trained using the SRI Language Modeling Toolkit
(SRILM). Since one of the goals of this work was
to improve the performance of a machine
translation (MT) system participating in a NIST
MT task, much of the training data was drawn
from the 2004 NIST “Large” Chinese-English
training corpus. This “C/E” corpus includes texts
from a variety of China-related sources. Additional
training material was drawn from the Canadian
parliamentary Hansard corpus. The test data were
the 2004 NIST C/E evaluation data.

The metric employed for the C/E MT NIST task is
BLEU (see Papineni et al. [4]), which measures the
similarity of the translation system’s output with
one or more reference translations. In this paper,
we measure the performance of the truecasing
module both by how accurately it assigns case to
normal text that has had case information removed,
and by its effect on BLEU. We define “case
accuracy” per word - a case error in a single
character of a word is counted as a case error for
that word. The goal of optimizing performance
according to one of these metrics may conflict with
optimizing performance according to the other.
Suppose that the MT system outputs “elephants in
africa mostly has long nose” and the truecasing
module converts this to “elephants in Africa
mostly has long nose”. We might be tempted to
add a rule to the truecasing module that imposes
uppercase for the first letter in every sentence.
Though this rule might help performance
according to the “case accuracy” metric, it may
hurt the BLEU score. In the example, if the
reference sentence were “Most elephants in Africa
have long noses”, BLEU will assign a higher score
to “elephants in Africa mostly has long nose” than
to “Elephants in Africa mostly has long nose”
(because the form of “elephants” in the reference is
all-lowercase).

The layout of this paper is as follows: section 2
will outline the problem, section 3 will describe the
statistical models, section 4 will describe the

experiments and their results, and section 5 will
discuss these results.

2. The Problem of Truecasing

The truecasing problem is not obvious until one
faces a real example. Consider the sentence
“indian paratroopers will command a joint alpha-
tango military exercise with the special forces of
the us pacific command”. In languages employing
the Latin alphabet, a sentence typically begins with
uppercase. Therefore, “indian” should be “Indian”
with little ambiguity. The word “us” could remain
lowercase but the word sequence “us pacific
command” suggests that the all-uppercase form
“US” is more likely. Thus, word context can
provide clues to case. In a syntactic approach,
some aspects of context could be exploited by
means of Part-Of-Speech (POS) tagging. For
instance, the tagger might tag “the us pacific
command” as “the <noun phrase>” and use the
information that “us” is part of a noun phrase to
generate “the US Pacific Command”.

At the beginning of our work on truecasing, we
investigated the distribution of the casing errors of
a unigram truecaser. This system, which was used
as the baseline in subsequent experiments, assigns
to words observed in the training data the most
frequent case observed. New words seen in the test
data for the first time – the so-called “unknown”
words - are left in lowercase. The resulting error
distribution is plotted below (with words of similar
frequency in the training corpus binned together).

Case Error distribution = f(word count in bin)

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0 1 2 3 4 5 6 7 8

Log10(word count in bin)

C
as

e
er

ro
r

p
ro

ba
b

ili
ty

Case Error Rate

Corpora specific imperfections

"unknowns"
count=0=>log=NaN

count=1=>log=0

Figure 1: Case error distribution of the baseline

truecaser as a function of word count in our
training corpus

The point marked “unknowns” appears for
convenience on the y axis (though its true x
coordinate is not 0 but -�); it represents words

appearing in the test data that were not seen in the
training data. It is not surprising that these words
have a higher case error rate than the words of
count 1: the baseline system has not learned
anything from the training data about the
“unknown” words. At the high end of the x axis,
we see that a few very frequent words such as
“the” also have a high error rate. This is partly
because of tokenization problems (e.g., “the”
sometimes has a hyphen glued to the end of it, or a
quotation mark glued to the front of it) and partly
because “the” and similar words often appear in
titles, which are particularly tricky.

In the truecasing approach we used (similar to [5]),
an N-gram language model (LM) is used to model
the contextual information. In the example, if the
trigram “US Pacific Command” has often been
seen, then the system will be inclined to carry out
truecasing correctly. The “case mapping” model
smooths the N-gram model. If (for instance) the
erroneous sequence “will Command a” occurred
once in the training data, this smoothing ensures
that an occurrence of “command” preceded by
“will” and followed by “a” will still receive the
correct all-lowercase form in the system’s output.

We need a third kind of model to deal with
“unknown” words – i.e., those that were not
observed in the training data. In the example, it is
quite likely that no form of “alpha-tango” (a rare
military code word) has been observed.
Nevertheless, the “unknown word” model we
provide will be capable of converting it to the
correct form, “Alpha-Tango”.

3. Scoring Function and Models

We gave in chapter 2 some motivations for three
sub-models. To use the specific contribution of
each sub-model, we combine them into a scoring
function � formulated by Eq.1. The sub-models
are:

- An N-gram model called �N to capture the
contextual information surrounding a word;

- A case mapping model called � to capture the
probabilities for different cases of a word;

- An “unknown word” model called � to provide
for unseen cases.

1 Eq.Π⊗Φ⊗=Ω Nθ

3.1 Terminology

Let S denote a sequence of words si, with case
information included. Let C() denote the function
that gives only the casing of a string, and L() the
function that returns its lowercase form, thus
leaving only information about the uncased word
sequence. Let AU denote “All Uppercase”, FU
“First letter Uppercase”, AL “All lowercase”, and
MC “Mixed Case”; for S = “USA is an acronym
for United States of America”, C(S) = AU AL AL
AL AL FU FU AL FU, and L(S) = “usa is an
acronym for united states of america”. Truecasing
is applied when we know L(S) and are trying to
obtain C(S). If both the case information C(S) and
the word information L(S) are known for a string
S, S is completely defined.

3.2 N-Gram model
�

N

One way of estimating the probability that si has a
particular case C(si) would be to assume
recursively that we already know the case of the
words preceding a particular word si in the string S.
This line of thought leads to the N-gram
component ✁ N of the truecaser. For instance, for
N=3, let P✂ 3(C(si) | L(si), si-2si-1) denote the
probability that the C(si) form of si (rather than
some other form) occurs after the cased word
sequence si-2si-1. An example: if L(si) = “america”,
and that si-2si-1 = “States of”, the trigram-related
probability of “America” is P✂ 3(C(si)=FU |
L(si)=“america”, “States of”).

3.3 Case mapping model ✄

Another way of estimating the probability that si
has a particular case C(si) would be to ignore
context and rely on the case forms observed in the
training data for si. This leads to the case mapping
model, P�(C(si) | L(si)). For example, the
probability of “America” given that some form of
“america” has occurred is denoted P�(C(si)=FU|
L(si)= “america”). Using � alone would be
equivalent to considering the most probable case
pattern for a word everywhere. This sub-model is
used to smooth the model ✁ N.

3.4 Unknown word model ☎

Finally, the sub-model called � deals with words si
that weren’t observed in the training data. It was
constructed by defining classes based on the form

of a word – for instance, the presence of non-word
symbols (e.g., internal hyphen). It’s formulated as

() ()))((|)()(|)(iiii sLClasssCPsLsCP ≈Π

The conditional probability on the right side above
is calculated from the case statistics for words that
belong to the class, and that occur exactly once in
the training data. Our assumption is that low-
frequency words in a given class tend to follow
similar patterns of case.

How should the function Class(L(si)) be defined?
Depending on the test corpus, the nature of such
“unknown” words may vary. They include rare
proper names such as “agbago” and mixed
alphanumeric expressions such as “$2563US” or
“675km” or “220kV”. Other forms are
compounded name entities and character sequences
resulting from words in non-alphabetic languages.
This last type of “unknown” word sometimes
occurs in the English portion of the C/E corpus
when Chinese characters have been inserted in
English text (e.g., to clarify the meaning of an
English word to Chinese readers).

Based on the characteristics of the C/E corpus, we
decided to define the following “unknown” word
classes:

1. quantity words: “unknown” tokens starting
or/and ending with numbers. Example:
“us$0.19”, “10kV”, “rmb0.308”.

2. acronyms: “unknown” tokens containing a
sequence of single letters followed by periods.
Example: “u.s.”, “u.s.-south”.

3. hyphenated words: “unknown” tokens made
up of at least two components joined by a
hyphen, where each component consists of a
sequence of alphabetic characters. Example:
“belarus-russian”, “jong-il”.

4. regular uniform words: “unknown” tokens
consisting entirely of alphabetic characters.
Example: “abesie”, “badeshire”.

These classes are considered in the precedence
order just given. Thus, an unknown token is only
considered for class 2 if it has been rejected for
class 1, and so on (that’s why “u.s.-south” is
assigned to class 2 and not class 3). “Unknown”
tokens not falling into one of these four classes are
left in all-lowercase form (an example is the
“unknown” token “cafâ¨â¦” we observed during

our tests, which results from a word that combines
alphabetic letters and Chinese characters).

3.5 Scoring function �

The ✁ N , � and � components of Portage’s
truecasing module (defined above) are true
probabilities. The scoring function � combines
them in the following way:

()
()

�
�

�
�

�

≈Ω

Φ

−−

Π

elsesLsCP

sssLsCP

unknownsifsLsCP

sLsC

ii

iiii

iii

ii N

)),(|)((*

)),(|)((

,)(|)(

)(|)(21θ

Although � defined in this way is not a probability
because of the product term, it has certain
advantages (e.g., ease of implementation in the
SRILM framework). The way � is formulated
indicates that at the step i, we already know the
case of the words preceding si in the string S. To
get a sense of how � works, consider the following
training text:

“Akakpo is the son of Agbago. So his name is
said and written as Akakpo Agbago in Canada
but Akakpo AGBAGO in Togo. Akakpo
AGBAGO is unique in Togo. Akakpo is a last
name for many. Agbago is a good guy. Agbago is
smart. Agbago is kind.”

And the following test text:

“Akakpo agbago”

Let’s redefine the � component slightly so it’s
based on bigrams rather than trigrams, and let’s
ignore smoothing and assume the component
models use frequencies directly to estimate
probabilities.

Then using these training and testing texts, we
obtain:

Step i = 1:

()

() Akakposˆ

""1

1*1

)|(*

)|(|

1 =

=
=

=Ω

Φ

C

knownisakakpo

akakpoAkakpoP

AkakpoAkakpoPakakpoAkakpo
Nθ

Step i = 2:

()

()

() AgbagoAkakposˆ

knownisagbago""
21

4

7

2
*

3

2

)agbago|AGBAGO(*

)Akakpoagbago,|AGBAGO(

Akakpoagbago,|AGBAGO

21

5

7

5
*

3

1

)agbago|Agbago(*

)Akakpoagbago,|Agbago(

Akakpoagbago,|Agbago

2 =

==

=Ω

==

=Ω

Φ

Φ

C

P

P

P

P

N

N

θ

θ

Thus, the scoring function �, if trained on this
corpus, would tend to predict “Agbago” rather than
“AGBAGO” after “Akakpo”. This prediction is
incorrect in Togo, but correct in Canada (and most
of the English-speaking world) – an example of
how slippery the notion of correct casing can get.

We also tried a different approach in which we find
the cased form that maximizes the trigram
probability, given the lowercase form and the two
preceding cased forms. Let S denote the entire
cased word sequence, and L the corresponding
sequence of lowercased words. By Bayes’s Law,
we have

())(/)(*)|(| LPSPSLPLSP =

However, by definition we know the lowercase
word sequence L. Thus, we want to maximize

())(*)|(| SPSLPLSP ∝

Substituting in the trigram estimate of P(si), we see
that at each step we are trying to maximize

),|(*),,|)((1212 −−−− iiiiiii sssPssssLP

Thus, we search over the cased forms si of L(si)
observed in the training data to find the one that
maximizes this expression. For an observed form si
of L(si), P(L(si)|si-2,si-1,si) will be 1. In initial
experiments, this approach yielded inferior
performance to that obtained by using the scoring
function � above.

4. Experiments and Results

We used the SRILM package, along with some
code we wrote ourselves, to handle the training
(creation of the language models) and the case
decoding (also called “disambiguation”). The �
models are produced in the ARPA N-gram LM
format and the � and � models in SRILM “V1 to
V2” mapping format.

The resources used were as follows:
- Training corpus: contains 366,532,578 tokens

(~words).
- Test corpus: contains 451,154 tokens (~words)

Recall that the training corpus comes from the
English-language half of the 2004 NIST “Large”
Chinese-English (C/E) training corpus (which
includes material from Hong Kong Hansard and
news sources such as Xinhua News Agency,
Associated Press, Agence Française de Press, etc.),
supplemented by material from the Canadian
Hansard corpus. The test corpus is the 2004 NIST
C/E test set.

To the scoring function � described above, we
added some heuristics. These are:
• Junk cleaning: we removed from the training

data various special tags; also, all lines in which
most words are uppercased (these turned out to
be extremely atypical).

• Title detection and processing: titles show
unusual casing patterns. Unfortunately, in
English there are no explicit rules for casing in
titles; frequently, casing is left to the whims of
the author. We implemented a title detection
module that relied on domain specific aspects
of our data, which consisted mainly of
newswire data. For instance, the presence of a
date, name of a news agency, and “reported by”
followed by a personal name was taken to
indicate a title. Used on training data, this
module makes it possible to train “body only”
or “title only” models; used on test, it makes it
possible to apply different models or rules to
title and body. The best-performing system
shown in Figure 2 was trained only on the
portion of the training corpus classified as
“body” by the title detector. For casing of test
text, this body-only system was applied both to
portions of the test corpus classified as “body”
and as “title”. Then, words in the title that were
longer than four letters were systematically
uppercased. It might seem more logical to use a
model trained on titles to assign case to words

in titles, but the main characteristic of titles in
the training text is inconsistency in case
assignment. Thus, the title detector’s usefulness
for training is that it enables us to remove titles
from the training data.

Portage-Truecasing Case Error Rate evaluation

19.35%

18.00%

5.24%

3.88%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

TOTAL AU FU MC AL UNK

Type of case errors

C
as

e
E

rr
or

 R
at

e
%

Baseline-Truecaser (� = ✁ 1)

Portage-Truecaser (� = ✁ 3 + ✂)

Portage-Truecaser (� = ✁ 3 + ✂ + ✄ + heuristics)

Case error types (word should be):
 AU: All Uppercased
 FU: First letter Uppercased
 MC: Mixed Case
 AL: All Lowercased
 UNK: unmatchable (non-alphabetics)

Figure 2: performance of Portage-Truecasing

The performance of Portage-Truecasing is plotted
in Figure 2 and shows 80% improvement in
relative error rate over the unigram baseline
technique,

☎
 = ✆ 1 (from 19.35% to 3.88%). The

figure also shows case error by the correct case
type – e.g., the points above “AU” show error rates
for words that should be written all-uppercase.
From the figure, it is clear that the effort that went
into classifying different types of unknown words
for the ✝ model and into developing heuristics
(junk cleaning and title detection) was justified: it
yielded an improvement of 26% relative (from
5.24% to 3.88% error). If we do not include the
heuristics but only ✝ , the improvement is only
13% relative (to 4.55% case error – this point is
not shown in the figure 2). Figure 3 provides an
analysis of Portage-Truecasing errors by word
count, as was done in Figure 1 for the baseline
truecaser.

Portage-Truecaser Case Error distribution = f(word count in bin)

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0 1 2 3 4 5 6 7 8
Log10(word count in bin)

C
as

e
er

ro
r

p
ro

b
ab

ili
ty

Case Error Rate

"unknowns"
count=0=>log=NaN

count=1=>log=0

Corpora specific imperfections

Figure 3: Case error distribution of Portage-
Truecaser as a function of word count in our
training corpus

Since the module is used for machine translation
(MT), we ran it on the output of the MT system
and obtained the BLEU results in Table 1. The last
two columns show that the unknown word model

✝ helps performance, while the use of heuristics
causes slight deterioration. As noted earlier, it is
not surprising that the best-performing system
according to case error rate (this system includes
the heuristics) is not the same as the best-
performing system according to BLEU (this
system does not include the heuristics). For most
applications, the case error rate is more
informative.

Baseline-
Truecaser
(

☎
 = ✆ 1)

Portage-
Truecaser
(

☎
=✆ 3+✞)

Portage-
Truecaser

(
☎

=✆ 3+✞ +✝
+heuristics)

Portage-
Truecaser

(
☎

=✆ 3+✞ +✝)

17.98% 23.77% 23.74% 23.83%
Table 1: BLEU score

5. Discussion

In this paper, we presented a module designed as
part of a machine translation system that uses three
statistical language models to assign case to a text.
It reduces the case error rate of a unigram baseline
truecaser by 80% relative, achieving 96% global
accuracy on the test corpus. We designed the
system in a manner that allowed us to quickly test
different variants; this was fortunate, because the
best variant according to case error rate and the
best variant according to BLEU turned out to be
different.

Some specific problems we encountered were:

• Inconsistency: there was a non-negligible
proportion of case inconsistencies in training
and test corpora. This happens because the
corpora are agglomerations of texts written by
different people with different formatting styles,
competences, and working tools. Furthermore,
not much attention is paid to enforcing casing
standards, even where these exist. Named
entities (e.g., “United States Government” vs.
“United States government”) and titles tend to
be subject to casing inconsistency.

• Portage specific side effects: errors from other
components of the system, particularly the
tokenizer, had a strong negative impact on
performance.

For future work, we could consider turning scoring
function

☎
 into a true probability by interpolating

the ✆ N and ✞ terms instead of multiplying them –
i.e., defining it as:

()
()

�
�

�
�

�

−

+≈Ω

Φ

−−

Π

elsesLsCP

sssLsCP

unknownsifsLsCP

sLsC

ii

iiii

iii

ii N

)),(|)((*)1(

)),(|)((*

,)(|)(

)(|)(21

λ
λ θ

Alternatively, we could approximately keep
☎

 in
its current form, but incorporate power terms � and ✁

 that would depend on the frequency of a word
(where K is a normalization factor):

()
()

�
�

�
�

�

≈Ω

Φ

−−

Π

elseKsLsCP

sssLsCP

unknownsifsLsCP

sLsC

ii

iiii

iii

ii N

,/))(|)((*

)),(|)((

,)(|)(

)(|)(21

β

α
θ

It is interesting to think about how one would build
a truecaser optimized for MT (i.e., to maximize the
BLEU score). MT output is not exactly the same as
regular text. One might consider training the
truecaser on output from the MT system whose
words have been assigned case in some other way
(e.g., by “pasting” onto them case patterns from
corresponding words in reference data).

References:

[1] A. Mikheev, “A knowledge-free method for capitalized
word disambiguation”, 37th conference on Association for
Computational Linguistics, pp. 159 – 166, 1999, College
Park, Maryland, ISBN.

[2] C. Chelba and A. Acero, “Adaptation of Maximum Entropy
Capitalizer: Little Data Can Help a Lot”, Conf. on
Empirical Methods in Natural Language Processing
(EMNLP) July 2004, Barcelona, Spain.

[3] J.H. Kim and P. C. Woodland, “Automatic Capitalization
Generation for Speech Input”, Computer Speech and
Language, 18(1):67–90, January 2004.

[4] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU:
A method for automatic evaluation of machine
translation”, IBM Technical Report RC22176, Sept. 2001.

[5] L. Lita, A. Ittycheriah, S. Roukos, and N. Kambhatla,
“tRuEcasIng”, Proceedings of ACL 2003, pp. 152–159,
Sapporo, Japan.

