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of different behaviors and functionalities which

have proven themselves to be highly useful for sur-

viving (and thriving) in dynamic, uncertain, and

hostile environments. In so far as such behaviors and

capabilities can help to increase the various degrees

of autonomy, effectiveness, robustness, and flexibil-

ity of one’s artificial agent (as defined earlier in this

paper), it would seem prudent to mimic such aspects

wherever feasible. On the other hand, if the agent’s

task domain does not demand such sophisticated

functionality (which, after all, will be expensive to

design, maintain, and operate) then simpler, non-

anthropomorphic functionalities may well be more

appropriate.

• Simulation — What, if any, role can advanced simu-

lation technology play in developing and verifying

modules and/or systems? Can we have standard vir-

tual components/test environments that everybody

trusts and can play a role in comparing systems to

each other? How far can development of modules

profitably proceed before they should be grounded

in a working system? How is the architecture

affected by its expected environment and its actual

embodiment?

Simulators are not a substitute for the real world. On

the other hand, if carefully designed, they can pro-

vide useful insights into some of the environmental

conditions an agent will have to face when ulti-

mately launched in the real world. In addition,

because simulators can provide designers with a host

of powerful tools for performing controlled, repeat-

able experiments they can be instrumental in

assisting the designer in understanding various

aspects of the agent’s behavioral ecology: the rela-

tionship between the agent’s structure or

configuration, its environment, and its resulting

behaviors (as defined earlier in the paper). In this

respect, I think simulation should be regarded as an

integral part of the agent design phase, during which

the designer is given the opportunity to explore and

incrementally test the agent’s (potentially vast)

design space; in particular, it gives the designer the

opportunity to differentiate between, and therefore

establish, the agent’s fixed and reviewable design

decisions, as defined in section 5 above.

• Learning — How can a given architecture support

learning? How can knowledge and skills be moved

between different layers of an agent architecture?

While a number of different architectures in the lit-

erature have been reasonably successful at applying

a variety of different learning techniques to the agent

control problem (e.g. reinforcement, performance,

explanation-based learning), the degree of self-tun-

ing which these agents have demonstrated has been

limited primarily, it would appear, due to their reli-

ance on fixed, pre-defined parameter/feature sets,

and/or on relatively simplistic performance criteria

according to which their behaviors are being opti-

mized. Given the (by now) empirically validated fact

that establishing an ideal agent parametrization —

that is, one which is intended to produce a particular

type of desired behavior in an optimal manner —

depends very strongly on the agent’s particular task

constraints and environmental circumstances, more

work is required to establish a taxonomy of different

task environments which agents could use to self-

tune their internal parameters and optimize their

behaviors with respect to their own particular

resources and task constraints. Wilson (Wilson

1990), among others, has made some inroads into

this problem but much work remains in formalizing

more complex environments involving global task

constraints, real-time events, limited or shared

resources, multiple agents, collaborative tasks, hos-

tility, deceit, etc.



how should they be implemented? How much does

each level/component of an agent architecture have

to know about the other levels/components?

Generally speaking, I think architectures comprising

multiple, concurrent layers are the best choice for

designing individual agents. A number of reasons

can readily be given for using multiple layers: they

increase the modularity and scalability of the agent’s

design; they make the long-term maintenance prob-

lem more manageable; they provide an effective

framework for integrating a variety of hybrid control

functions, ranging from purely non-deliberative to

deliberative; they can increase the agent’s level of

robustness through enabling the use of concurrent,

redundant behaviors, and through permitting a

degree of distribution of the agent’s overall control

function. The opening statement above, of course,

raises (at least) two important questions: What

behavior/functionality should be placed in a single

layer of an agent? What behavior/functionality

should be placed in a single agent? Answers to either

of these questions are non-trivial, likely depending

on characteristics of the particular task domains of

the agent(s) in question. However, some perfor-

mance criteria might prove useful in answering these

questions (see below).

• Performance — What types of performance goals

and metrics can realistically be used for agents

operating in dynamic, uncertain, and even actively

hostile environments? How can an architecture

make guarantees about its performance with respect

to the time-critical aspect of the agent's physical

environment? What are the performance criteria for

deciding what activities take place in each level/

component of the architecture?

A variety of different performance goals have

appeared in the literature. Broadly speaking these

can be divided into those which measure some

aspect of the internal performance of the agent (e.g.

the efficiency of its planning functions, the number

of communication acts performed, total computa-

tional resources consumed, the utilization of these

computational resources); and those which assess

performance of the agent with respect to some exter-

nally measurable task or goal (e.g. mean time

between failure, speed of task completion, accuracy

of task completion, total (sub-)tasks completed). As

argued earlier in the paper, detailed quantitative

comparisons between different architectures are

next to impossible given the number and variety of

such performance criteria, most of which, judging

by existing cases in the literature, can only be inter-

preted with respect to the particular architecture

being measured.

Conventional real-time systems are designed to meet

the individual timing requirements of a set of system

tasks in such a way that they are not only logically

predictable but also temporally predictable. For this

to occur, such a system must ensure, in advance, that

sufficient resources can be pre-allocated for achiev-

ing each and every one of its time-critical tasks. For

a resource-bounded agent operating in a dynamic

multi-agent world, the conception of real time needs

to be revised somewhat. Whereas conventional real-

time systems are usually defined in terms of a stati-

cally determined control sequence, real-world

agents have to deal with both hard and soft aperiodic

real-time events which might occur at unexpected

times throughout the period of their operation. To

cope with such events agents will need to make use

of opportunistic control strategies such that they

may direct their choice of actions dynamically in

response to unanticipated real-time events. While

such strategies can virtually guarantee timely

responses to a number of localized hard real-time

events (e.g. avoiding collisions), it also means that

agents’ precise action sequences and long-term goal

behaviors can no longer be pre-determined with

absolute certainty. But this is to be expected of

resource-bounded agents: just as the correctness of

their behaviors might need to be traded off against

their robustness, so too might the long-term predict-

ability of their task-level activities.

Possible performance criteria for deciding what

activities should take place in a given level within an

agent might include: minimizing inter-level messag-

ing (e.g. by clustering “related” activities in the

same level), balancing the number of different world

events that each level can respond to, clustering

activities according to their space and/or time gran-

ularity profiles, and exploiting the “naturalness”

with which each activity’s corresponding knowl-

edge and skills requirements can be expressed

within a given level’s representation formalism.

Analogous criteria might also be applicable to

decide whether the same activities should be carried

out by more than one agent.

• Psychology — Why should we build agents that

mimic anthropomorphic functionalities? How far

can/should we draw metaphoric similarities to

human/animal psychology? How much should mem-

ory organization depend on human/animal

psychology?

Humans, by and large, are capable of a vast number



Wilson, S.W. The animat path to AI. In J.A. Meyer and

S.W. Wilson, editors, From Animals to Animats: Pro-

ceedings of the First International Conference on the

Simulation of Adaptive Behavior. MIT Press: Cam-

bridge, MA, 1990.

A Appendix: Symposium Questions

Here are my responses to some of the questions raised

by the organizers of the symposium:

• Coordination — How should the agent arbitrate/

coordinate/cooperate its behaviors and actions? Is

there a need for central behavior coordination?

It would seem to be a requirement that if an agent is

comprised of a number of concurrently operating

behaviors, some of which conflict for one reason or

another (e.g. they propose execution of mutually

exclusive actions), then such behaviors will require

some form of central coordination. Moreover, in

practice, I would suggest that there will always be

some behaviors present in an agent which inherently

conflict with one another — so behavior arbitration

will be a must. Of course “central” in the above

sense need not imply that all coordination control

functions be localized within one module of the

agent; rather, it would only seem to require that glo-

bal or meta-level knowledge be taken into account

when determining which of the agent’s multiple, and

potentially conflicting, actions should be selected

for execution. In either case (TouringMachines,

incidentally, localize their meta-level control rules

in a single module), it is the agent programmer’s

responsibility to ensure that the appropriate meta-

level control knowledge be appropriately crafted

and correctly deployed within the agent. For soft-

ware engineering purposes, co-location or

centralization of the agent’s behavior coordination

functions seems preferable; for run-time execution

purposes this may well not be the case.

• Interfaces — How can human expertise be easily

brought into an agent's decisions? Will the agent

need to translate natural language internally before

it can interact with the world? How should an agent

capture mission intentions or integrate various lev-

els of autonomy or shared control? Can restricted

vocabularies be learned and shared by agents oper-

ating in the same environment?

Answers to most of these questions depend very

much on the characteristics, and in particular the

richness and complexity, of the agent’s task domain.

If humans and agents need to interact then it would

be desirable, if not essential in some situations, for

agents to be capable of natural language recognition

and generation (relatedly, speech processing would

also be useful); on the other hand, for a number of

simpler autonomous or operational tasks — but not

excluding those which might require some form of

coordination with other (artificial) agents — a less

unstructured and more constrained language of

interaction would seem preferable, even at the

expense of lost expressivity. Human-computer inter-

faces are, in general, difficult to design well. And

given the seemingly conflicting needs for providing,

on the one hand, explicit, on-demand interaction

between user and agent; and for requiring, on the

other, that agents minimize (or at least simplify) the

user’s interaction with the computer by carrying out

delegated tasks as transparently and autonomously

as possible, it is almost certainly the case that intui-

tive and effective human-agent interfaces will be

even more challenging to design.

• Representation — How much internal representa-

tion of knowledge and skills is needed? How should

the agent organize and represent its internal knowl-

edge and skills? Is more than one representational

formalism needed?

Answers to these questions, again, depend heavily

on the agent’s task domain. As many successful

agent designs in the literature have shown, some task

domains require essentially no representation what-

soever. In general, I think one should use only as

much (or as little) internal representation as one

needs. How much one needs, however, is likely to

depend on one’s preference weightings of such cri-

teria as speed of run-time execution, ease of

behavior/control programming and long-term main-

tenance, and ease of incorporating learning

mechanisms within the agent (assuming, as I do, that

at the very least, agents will require explicit repre-

sentations of their goals if they are to learn or

improve their performance). Because of such

diverse and conflicting criteria I think it makes sense

to use as many representational formalisms as one

needs. In this respect, the TouringMachine architec-

ture demonstrates how several such representations

can be fairly easily accommodated in a single agent

using multiple hybrid control layers.

•Structural — How should the computational capa-

bilities of an agent be divided, structured, and

interconnected? What is the best decomposition/

granularity of architectural components? What is

gained by using a monolithic architecture versus a

multi-level, distributed, or massively parallel archi-

tecture? Are embodied semantics important and
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TouringMachine architecture, these design decisions

were established upon close examination of the

intended TouringWorld domain. For instance, the

decision to divide control among multiple,

independent concurrent layers was influenced by the

fact that TouringMachines would have to deal flexibly

and robustly with any number of simultaneous events,

each occurring at a potentially different level of space-

time granularity. Such differences in event granularity,

together with the need for carrying out both long-term,

deadline-constrained tasks, as well as short-term

reactions to unexpected events, ultimately played a

part in the decision to combine both deliberative and

non-deliberative control functions into a single hybrid

architecture. In turn, the need to ensure that any such

(non-real-time) deliberative functions be “suitable'' for

use in a real-time domain such as the TouringWorld —

in other words, that they be efficient and effective on

the one hand but flexible and robust on the other —

suggested that such deliberative functions be: (i)

latency-bounded in order to provide guaranteed

system responsiveness (this in turn demands fairly

strict control over internal computational resource

use); (ii) that they operate incrementally (in other

words, that they be capable of suspending operation

and state after regular — and arbitrarily small —

periods of processing time); and (iii) that they serve

merely as resources for action rather than as strict

recipes for overall agent control. This last requirement

would also become the main motivating force behind

the decision to employ a context-sensitive mediatory

control policy for establishing control layer priorities.

Other design decisions worth mentioning here include

the incorporation of functions for reasoning about —

or modelling — other agents' actions and mental states

and for identifying and flexibly resolving conflicts

within and between agents (this is necessary because

the TouringWorld domain is populated by multiple

intentional agents with limited computational and

informational resources); and mechanisms for

constantly sensing and monitoring the external world

(which are needed since the TouringWorld domain is

both dynamic and unpredictable).

Identification and isolation of the second type of

design decisions, reviewable decisions, are those

which, as their name suggests, can be “reviewed after

they are implemented'' (Cohen 1991, page 31). The

purpose of differentiating fixed and reviewable design

decisions was to enable the basic (fixed) design to be

implemented and run as early as possible, and to

provide an empirical environment in which to develop

iteratively this basic agent model, to test hypotheses

about how the model should behave, and then to

review, subsequently, particular design decisions in

the light of observed performance. Also, by providing

— in addition to the TouringMachine agent

architecture — a highly parametrized and controllable

testbed environment like the TouringWorld, a very

effective and productive framework in which to carry

out such design activities was thus established.

Examples of reviewable TouringMachine design

decisions — established with empirical feedback

gained through use of the TouringWorld Testbed —

include the particular set of reactive rules initially

made available to the agent, the contents of its various

domain-specific libraries (plan schemas, BDI model

templates, conflict-resolution methods, and space-time

projection functions), the initial set of heuristics used

to program the agent's focus of attention mechanisms,

and the precise set of censor and suppressor control

rules which are used to mediate the actions of the

agent's three control layers.

In conclusion, the evaluation of TouringMachines

appeared to support the claim that it is both desirable

and feasible to combine non-deliberative and suitably

designed and integrated deliberative control functions

in a single, hybrid, autonomous agent architecture. As

was demonstrated, the resulting architecture, when

suitably configured, was capable of effective, robust,

and flexible behaviors in a reasonably wide range of

complex single- and multi-agent task scenarios. As

described above, the behavioral repertoire of

TouringMachines is wide and varied, including

behaviors which are reactive, goal-oriented, reflective,

and also predictive. The evaluation, furthermore,

suggested that establishing an appropriate balance

between reasoning and acting — that is, between

appropriate degrees of deliberative and non-

deliberative control — would appear to depend on

characteristics of the task environment in which the

particular TouringMachine is operating. More

generally, and in line with the experiences of both

Maes (Maes 1990) and Pollack (Pollack & Ringuette

1990), there is evidence to suggest that environmental

factors invariably play an important role in

determining which agent configuration or

parametrization is the most appropriate for any given

situational context. Finally, one cannot underestimate

the importance of deploying — from the earliest stages

of design — concrete measures for carrying out

extensive experimentation. In this respect, the

TouringWorld Testbed domain has proved a viable

and useful system for evaluating different agent

control designs.



traffic lights. Scenarios were selected with the aim of

evaluating some of the different capabilities and

behaviors which TouringMachines will require if they

are to complete their tasks in a competent and effective

manner — for example, reacting to unexpected events,

effecting of goal-directed actions, reflective and

predictive goal monitoring, spatio-temporal reasoning,

plan repair, coping with limited computational and

informational resources, as well as dealing with real-

time environmental change. The scenarios can be

considered interesting because they succinctly

exercise agents' abilities to carry out time-constrained

tasks in complex — partially-structured, dynamic,

real-time, multi-agent — environments.

It was not the aim of the evaluation to show that

the TouringMachine architecture is in any sense

“optimal”. As argued elsewhere (Ferguson 1992),

optimal rational behavior will in general be impossible

if the agent is resource-bounded, has several goals, and

is to operate in a real-time multi-agent environment in

which events are able to take place at several levels of

space-time granularity. As such, one should more

realistically expect a TouringMachine to behave

satisficingly, but at times — for example, when under

extreme real-time pressure — to fail to satisfy every

one of its outstanding goals. What was really of

interest here was understanding how the different

configurations of agents and the different

environmental characteristics to which such

configurations are subjected affected, positively or

negatively, the ability of agents to satisfy their goals.

It was also not the aim of the evaluation to show

that TouringMachines were “better”' than other

integrated agent architectures at performing their

various tasks. Rarely is it the case that the actual and/

or intended task domains of different agent

architectures are described in sufficient detail so as to

permit direct comparisons of agent performance. The

lack, at present, of any common benchmark tasks or of

any universally agreed upon criteria for assessing

agent performance — previous evaluations have relied

either on a single performance criterion (for example,

the total point score earned for filling holes in specific

single-agent Tileworld environments (Pollack &

Ringuette 1990; Kinny & Georgeff 1991)), or on a

small number of performance criteria which can only

be interpreted with respect to the particular

architecture being measured (for example, the total

number of behaviors communicated between agents in

selected MICE environments (Durfee & Montgomery

1990)) — combine to make detailed quantitative

comparisons with other architectures extremely

difficult if not altogether impossible.

Due to the relatively large number of parameters

which the TouringWorld testbed provides for specify-

ing different agent configurations, performance

evaluation criteria (for example, task completion time,

resource utilization), and agent task and environmental

characteristics, the evaluation performed was neces-

sarily partial, the main focus being placed on studying

selected qualitative aspects of TouringMachine behav-

ioral ecology — namely, some of the effects on agent

behavior which, in a given task environment, can occur

through varying individual agent configuration param-

eters; and the effects on agent behavior which, for a

given agent configuration, can occur through varying

certain aspects of the agent's environment. Like with

the Tileworld experiments described by Pollack and

Ringuette (Pollack & Ringuette 1990, page 187), a

number of TouringWorld “knobs” (for example, world

clock timeslice size, total per-timeslice resources

available to each agent, agent size, agent speed and

acceleration/deceleration rate limits, agent sensing

algorithm, initial attention focussing heuristics, reac-

tive rule thresholds, plan schema and model template

library entries) were set to provide “baseline” environ-

ments which would be dynamic, somewhat

unpredictable, and moderately paced. In such environ-

ments, a competent (suitably configured) agent should

be able to complete all of its goals, more or less accord-

ing to schedule; however, under certain environmental

conditions and/or agent parametrizations this will not

always be the case. Details on the evaluation of Tour-

ingMachines can be found elsewhere (Ferguson 1992).

5 Discussion

Apart from matters arising directly from the evaluation

process described above, a number of experiential and

implementational issues which bear on the

applicability and appropriateness of the

TouringMachine architecture also merit addressing at

this point. As mentioned above, the first stage in

designing the TouringMachine architecture involved

an analysis of the intended TouringMachine task

environment: that is, a characterization of those

aspects of the intended environment which would most

significantly constrain the TouringMachine agent

design. As will now be argued, the main purpose of

this analysis was to differentiate between, and

therefore establish, what Cohen (Cohen 1991) terms

the system's fixed and reviewable design decisions.

Fixed design decisions are those which “will not be

reviewed anytime soon'' (Cohen 1991, page 31). In the



enabling the user to specify, visualize, measure, and

analyze any number of user-customized agents in a

variety of single- and multi-agent settings, the testbed

provides a powerful platform for the empirical study of

autonomous agent behavior.

A number of experiments have been carried out on

TouringMachines which illustrate, in particular, that

the balance between goal-orientedness (effectiveness)

and reactivity (robustness) in agents can be affected by

a number of factors including, among other things, the

level of detail involved in the predictions agents make

about each other, the degree of sensitivity they

demonstrate toward unexpected events, and the

proportion of total agent resources that are made

available for constructing plans or building BDI

models of other agents. Other experiments point

toward a trade off between the reliability and the

efficiency of the predictions an agent can make about

the future — this turns out to be an instance of the well-

known extended prediction problem (Shoham &

McDermott 1990). Yet other experiments have been

carried out which suggest that predicting future world

states through causal BDI modelling of agents’ mental

states, can, in certain situations, prove useful for

promoting effective coordination between agents with

conflicting goals.

4.1  Some Methodological Issues

One useful approach toward understanding the

reasons for the behaviors exhibited by the

TouringMachine agent design — and, more

specifically, for identifying the conditions under which

one configuration of the architecture performs better

than another — is to vary the environment in which it

operates. The simplest approach to this issue, Langley

(Langley 1988) argues, involves designing a set of

benchmark problems, of which some, for the purposes

of scientific comparison (that is, for the purposes of

enabling independent variation of different task

environment attributes), should involve artificial

domains. The TouringWorld environment is one such

domain; other examples include the Phoenix

environment (Cohen et al. 1989), the Tileworld

(Pollack & Ringuette 1990), and MICE (Durfee &

Montgomery 1990).

The power of the TouringWorld testbed domain,

and of artificial domains in general, arises from the

insights it can provide toward the improved

understanding of agent — in this case,

TouringMachine — behavioral ecology: in other

words, the understanding of the functional

relationships that exist between the designs of agents

(their internal structures and processes), their

behaviors (the tasks they solve and the ways in which

they solve these tasks), and the environments in which

they are ultimately intended to operate (Cohen et al.

1989).

The characterization of TouringMachines as a

study of agent behavioral ecology exemplifies a

research methodology which emphasizes complete,

autonomous agents and complex, dynamic task

environments. Within this methodological context, the

focus of the present evaluation has been centered on

two particular research tasks. Cohen et al. (Cohen et al.

1989) refer to these as environmental analysis, in other

words, understanding what characteristics of the

environment most significantly constrain agent design;

and the design task, in other words, understanding

which agent design or configuration produces the

desired behaviors under the expected range of

environmental conditions.

These two tasks, in fact, are the first two stages of

a more complete research methodology which Cohen

(Cohen 1991) refers to as the MAD methodology, for

modelling, analysis, and design.3 This methodology

aims to justify system design (and re-design) decisions

with the use of predictive models of a system's

behaviors and of the environmental factors that affect

these system behaviors (more on this below). Like

IRMA agents in the Tileworld domain (Pollack &

Ringuette 1990), TouringMachine agents can be

viewed as having been developed via an incremental

version of MAD, in which the (causal) model of

TouringMachine behavior is developed incrementally,

at the same time as the agent design. In other words,

the agent design (or some part of its design) is

implemented as early as possible, in order to provide

empirical data (or feedback) which flesh out the

model, which then become the basis for subsequent

redesign (Cohen 1991). The implications of adopting

such a design method, as well as the roles played in this

method by the environmental and behavioral analyses

referred to above, are discussed in detail elsewhere

(Ferguson 1992).

The evaluation of TouringMachines was realized

through a series of interesting task scenarios involving

one or more agents and/or zero or more obstacles or

3. The remaining design activities — predicting how

the system (agent) will behave in particular situations,

explaining why the agent behaves as it does, and generalis-

ing agent designs to different classes of systems, environ-

ments, and behaviours — were beyond the scope of this

work. See Cohen (Cohen 1991, pages 29—32) for details.



deliberative and non-deliberative action control

mechanisms.

In addition to addressing the conjecture concerning the

suitability of a hybrid control approach, the proposed

control architecture was intended to address the impor-

tance of and need for extensive empirical evaluation of

integrated agent architectures, not merely in terms of

the per-agent, task-oriented criteria identified earlier in

this section (autonomy, effectiveness, robustness, and

flexibility), but also in terms of the controlled agents'

behavioral ecology (Cohen et al. 1989)   that is, in

terms of the functional relationships between agent

design (agents' internal structures and processes),

agent behavior (the choice of tasks to be solved and the

manner in which they are solved), and environmental

characteristics. To address these issues, a highly

parametrized and instrumented multi-agent simulation

testbed was implemented in conjunction with the

TouringMachine control architecture. Enabling con-

trolled, repeatable experimentation and facilitating the

creation of diverse single- and multi-agent task scenar-

ios, the TouringWorld Testbed is described in more

detail elsewhere (Ferguson 1992). For now some com-

ments on the experimental method employed must

suffice.

4 Experimenting with TouringMachines

The TouringWorld multi-agent simulation testbed

provides the user with a 2-dimensional world which is

occupied by, among other things, multiple

TouringMachines, obstacles, walls, paths, and

assorted information signs. World dynamics are

realized by a discrete event simulator which

incorporates a plausible world updater for enforcing

“realistic” notions of time and motion, and which

creates the illusion of concurrent world activity

through appropriate action scheduling. Other

processes (see Fig. 3.a) handled by the simulator

include a facility for tracing agent and environmental

parameters, a statistics gathering package for agent

performance analysis, a mechanism enabling the

testbed user to control the motion of a chosen agent, a

declarative specification language for defining the

agents to be observed, and several text and graphics

windows for displaying output (see Fig. 3.b). By

Fig. 3. (a) Top-level view of the TouringWorld multi-agent testbed. (b) A snapshot of a particular

TouringWorld scenario showing various types of (labelled) objects and agents.
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3.1  Limitations of Pure Non-deliberative Control

The strength of purely non-deliberative architectures

lies in their ability to identify and exploit local patterns

of activity in their current surroundings in order to gen-

erate more or less hardwired action responses (using

no memory or predictive reasoning, and only minimal

state information) for a given set of environmental

stimuli. Successful operation using this method of con-

trol presupposes: (i) that the complete set of

environmental stimuli required for unambiguously

determining subsequent action sequences is always

present and readily identifiable  in other words, that

the agent's activity can be strictly situationally deter-

mined; (ii) that the agent has no global task constraints

  for example, explicit temporal deadlines   which

need to be reasoned about at run-time; and (iii) that the

agent's goal or desire system is capable of being repre-

sented implicitly in the agent's structure according to a

fixed, pre-compiled ranking scheme.

Situationally determined behavior will succeed when

there is sufficient local constraint in the agent's envi-

ronment to determine actions that have no irreversibly

detrimental long-term effects. Only then, as Kirsh

(Kirsh 1991) argues, will the agent be able to avoid

representing alternative courses of actions to deter-

mine which ones lead to dead ends, loops, local

minima, or generally undesirable outcomes. It follows,

then, that if the agent's task requires knowledge about

the environment which is not immediately available

through perception and which can, therefore, only be

obtained through some form of inference or recall,

then it cannot truly be considered situationally deter-

mined. Kirsh (Kirsh 1991) considers several such

tasks, a number of which are pertinent to the Touring-

World domain: activities involving other agents, as

these often require making predictions of their behav-

ior and reasoning about their plans and goals (Davis

1990, page 395); activities which require responding to

events and actions beyond the agent's current sensory

limits (such as taking precautions now for the future or

when tracking sequences of behaviors that take place

over extended periods of time); as well as activities

which require some amount of reasoning or problem

solving (such as calculating a shortest route for naviga-

tion). The common defining feature of these tasks is

that, besides requiring reliable and robust local control

to be carried out, they also possess a non-local or glo-

bal structure which will need to be addressed by the

agent. For instance, to carry out a navigation task suc-

cessfully in the TouringWorld an agent will need to

coordinate various locally constrained (re-)actions

such as slowing down to avoid an obstacle or slower

moving agent with other more globally constrained

actions such as arriving at a target destination within

some pre-specified deadline.

While non-deliberative control techniques ensure fast

responses to changing events in the environment, they

do not enable the agent's action choices to be influ-

enced by deliberative reasoning. In most non-

deliberative architectures, the agent's goals are repre-

sented implicitly   in effect, embedded in the agent's

own structure or behavioral rule set. When goals are

not represented explicitly, Hanks and Firby (Hanks &

Firby 1990) argue, they will not be able to be changed

dynamically and there will be no way to reason about

alternative plans for carrying them out. Maes (Maes

1990) also argues that without explicit goals it is not

clear how agents will be able to learn or improve their

performance.

Complex agents will need complex goal or desire sys-

tems   in particular, they will need to handle a

number of goals, some of which will vary in time, and

many of which will have different priorities that will

vary according to the agent's situational needs. The

implications of this, Kirsh (Kirsh 1991) argues, is that

as agents' desire systems increase in size, there will be

a need for some form of desire management, such as

deliberation, weighing competing benefits and costs,

and so on.

There are undoubtedly a number of real-world

domains which will be suitable for strictly non-delib-

erative agent control architectures. It is less likely

whether there exist any realistic or non-trivial domains

which are equally suited to purely deliberative agents.

What is most likely, however, is that the majority of

real-world domains will require that intelligent auton-

omous agents be capable of a wide range of behaviors,

including some basic non-deliberative ones such as

perception-driven reaction, but also including more

complex deliberative ones such as flexible task plan-

ning, strategic decision-making, complex goal

handling, or predictive reasoning about the beliefs and

intentions of other agents.

A central goal of the research presented here was to

demonstrate that it is both desirable and feasible to

combine suitably designed deliberative and non-delib-

erative control functions to obtain effective, robust,

and flexible behavior from autonomous, task-achiev-

ing agents operating in complex environments. The

arguments put forward so far have attempted both to

outline some of the broader functional and behavioral

requirements for intelligent agency in complex task

domains like the TouringWorld, and also to justify a

hybrid control approach that integrates a number of



plete their tasks, be able to coordinate their

activities with other agents that they might

encounter: that is, they should be capable of

cooperation.2

• A TouringMachine should be robust to unex-

pected events. Successful operation in a real-time

dynamic environment will require that Touring-

Machines be able to identify and handle   in a

timely manner   a host of unexpected events at

execution-time. For many events (such as the sud-

den appearance of a path-blocking obstacle) an

agent will have little or no time to consider either

what the full extent of its predicament might be or

what benefits consideration of a number of differ-

ent evasive maneuvers might bring. In order to

cope with such events, TouringMachines will

need to operate with guaranteed responsiveness

(for example, by using latency-bounded computa-

tional and execution techniques) as well as being

fairly closely-coupled to their environments at all

times. Since the time and location of such events

will be unpredictable, TouringMachines will need

to monitor their surroundings continually through-

out the course of their goals.

• A TouringMachine should be flexible in the way

it carries out its tasks. Due to the dynamic and

unpredictable nature of the TouringWorld envi-

ronment, and the fact that its multiple inhabitants

must operate in real time with limited world

knowledge, TouringMachines will inevitably be

faced with various belief and/or goal conflict situ-

ations arising from unforeseen interactions with

other agents. Agents operating cooperatively in

complex domains must have an understanding of

the nature of cooperation. This, Galliers (Galliers

1990) argues, involves understanding the nature

and role of multi-agent conflict. To behave flexi-

bly and to adjust appropriately to changing and

unpredicted circumstance, TouringMachines

should be designed to recognize and resolve unex-

pected conflicts rather than to avoid them. Also,

for the purposes of control and coordination,

TouringMachines must be able to reason about

2. Following Bond and Gasser (Bond & Gasser 1988,

page 19), cooperation in the TouringWorld is viewed simply

as a special case of coordination among non-antagonistic

agents. While TouringMachines are not actually benevolent

(they are selfish with respect to their own goals and have the

ability to drop or adopt different intentions according to their

own preferences and situational needs) they are also not

antagonistic since they do not intentionally try to deceive or

thwart the efforts of other TouringMachines.

their own and other agents' activities. In this

respect, each TouringMachine must have the

capacity to objectify particular aspects of the

world   that is, to construct and deploy internal

models of itself and of other agents   to see

where it fits in the coordinated process and what

the outcomes of its own actions might be (Bond &

Gasser 1988, page 25).

Although much of the above functionality could be

described as deliberative (for example, reasoning

about the temporal extent of actions, conflict resolu-

tion, reflexive modelling), it is unclear whether a

strictly deliberative control approach based on tradi-

tional planning techniques would be adequate for

successful operation in the TouringWorld domain.

Most classical planners make a number of important

simplifying assumptions about their domains which

cannot be made about the TouringWorld: namely, that

the environments remain static while their (often arbi-

trarily long) plans are generated and executed, that all

changes in the world are caused by the planner's

actions alone, and that their environments are such that

they can be represented correctly and in complete

detail. Given that the TouringWorld is dynamic and

multi-agent and given that TouringMachines also have

inherently limited physical and computational means

for acquiring information about their surroundings, it

seems clear that a strictly traditional planning

approach to controlling TouringMachines would be

unsuitable. Also, while it is true that planning systems

capable of execution monitoring and interleaved plan-

ning and execution represent a significant advance on

the earlier traditional planners, their usefulness in a

highly dynamic and real-time domain like the Touring-

World is questionable, particularly given the

reservations expressed by Georgeff (Georgeff 1990)

and Bratman et al. (Bratman, Israel, & Pollack 1988)

concerning their computational efficiency and inabil-

ity to cope with situationally-varying time constraints.

Similarly, while the inclusion of at least some degree

of non-deliberative control in TouringMachines would

seem essential   particularly since the agents will

need to be closely coupled to their environment, robust

to unexpected events, and able to react quickly to

unforeseen events and operate with guaranteed levels

of responsiveness   it is questionable whether non-

deliberative control techniques alone will be sufficient

for providing TouringMachines with the complete

behavioral repertoire necessary for successful opera-

tion in the TouringWorld environment. This argument

deserves closer consideration.



agent’s high-level tasks (e.g. planning, causal model-

ling, counterfactual reasoning) is sensitive also to its

low-level, high-priority behaviors such as avoiding

collisions with other agents or obstacles.

3 Hybrid Architectures: a Rationale

An autonomous agent operating in a complex environ-

ment is constantly faced with the problem of deciding

what action to take next. As Hanks and Firby (Hanks

& Firby 1990) point out, formulating this problem pre-

cisely can be very difficult since it necessitates

consideration of a number of informational categories

which are often difficult to ascertain   for example,

the benefits and costs to the agent of executing partic-

ular actions sequences; or which have been

demonstrated from previous research to be problem-

atic to represent   for example, models of agents'

beliefs and desires about a world which is complex and

unpredictable.

The control problem in an agent is the problem of

deciding how to manage these various sources of infor-

mation in such a way that the agent will act in a

competent and effective manner, with respect to its

own resources. This problem, Hanks and Firby (Hanks

& Firby 1990) suggest, amounts to balancing two “rea-

sonable'' approaches to acting in the world: the first,

deliberation, involves making as many decisions as

possible as far ahead of time as possible; the second

approach, reaction, is to delay making decisions as

long as possible, acting only at the last possible

moment. At a glance, the first approach seems per-

fectly reasonable since, clearly, an agent which can

think ahead will be able to consider more options and

thus, with forethought, be more informed when decid-

ing which action to take. On the other hand, since

information about the future can be notoriously unreli-

able and, in many real-world situations, difficult or

even impossible to obtain given the agents' changing

time constraints, it would also seem reasonable that

acting at the last moment should be preferred. In fact,

except perhaps for a small number of special-case task

domains, it would seem much more reasonable to

assume that neither approach   deliberation or reac-

tion   should be carried out to the full exclusion of the

other.

TouringMachines are autonomous, mobile agents

which are capable of rationally carrying out one or

more tasks in dynamic, real-time, multi-agent

domains. In particular, TouringMachines have to date

been studied in a complex multi-agent traffic naviga-

tion domain   the TouringWorld. The tasks

performed by TouringMachines are prioritized in

advance by the agent's designer and include goals like

avoiding collisions with other mobile agents and fixed

obstacles, obeying a commonly accepted set of traffic

regulations, and also, as mentioned above, relocating

from some initial location to some target destination

within certain time bounds and/or spatial constraints.

Besides being limited in terms of its internal computa-

tional resources, each TouringMachine will start out

with only limited knowledge of its world: in particular,

although each TouringMachine possesses a topologi-

cal map of the various paths and junctions defining all

of the navigable routes in the world, it will have no

prior knowledge regarding other agents' locations or

goals or the obstacles it might encounter en route. In

addition, each TouringMachine has limited means for

monitoring and acquiring information from its sur-

roundings and will be restricted in its capacity to

communicate with other agents: intentions to turn or

overtake are communicated via primitive signalling

alone, much like a human driver does in a car.

The goal of this research was to produce an integrated

control architecture which would enable TouringMa-

chines to carry out tasks and act on their environments

autonomously and in accordance with a set of domain-

specific evaluation criteria; namely, effectiveness,

robustness, and flexibility. These criteria suggest a

broad range of behavioral and functional capacities

that each TouringMachine might need to possess:

• A TouringMachine should be capable of autono-

mous operation. Operational autonomy requires

that the agent have its own goals and be able to

select among these as and when required. In addi-

tion, as Covrigaru and Lindsay (Covrigaru &

Lindsay 1991) argue, the agent should, among

other things, be capable of interacting with its

environment, be able to move (preferably fluidly)

around its environment, have selective attention

(this is also desirable since TouringMachines have

limited computational resources), have a varied

behavioral repertoire, and have differential

responsiveness to a variety of environmental

conditions.

• A TouringMachine should carry out its goals in an

effective manner. Effective goal achievement

requires that the agent be capable of carrying out

its multiple tasks in an efficient and timely man-

ner. Since among its various tasks, a

TouringMachine must navigate along some route

within a pre-specified time limit, the agent should

be able to reason predictively about the temporal

extent of its own actions. Also, because Touring-

Machines will operate in a partially-structured

multi-agent world, they should, in order to com-



agent in front of it.

Inputs to and outputs from layers are generated in

a synchronous fashion, with the context-activated con-

trol rules being applied to these inputs and outputs at

each synchronization point. The rules, thus, act as fil-

ters between the agent’s sensors and its internal layers

(suppressors), and between its layers and its action

effectors (censors) — in a manner very similar to Min-

sky’s suppressor- and censor-agents (Minsky 1986).

Both types of rules are of the if-then condition-action

type. In the case of censor rules, the conditional parts

are conjunctions of statements that test for the presence

of particular sensory objects recently stored in the

agent’s Perception Subsystem. Censor rules’ action

parts consist of operations to prevent particular sen-

sory objects from being fed as input to selected control

layers. In Fig. 2, for example, the censor rule cen-

sor-rule-1 is used to prevent layer R from

perceiving (and therefore, from reacting to) a particu-

lar obstacle which, for instance, layer M might have

been better programmed to deal with. In the case of

suppressor control rules, conditional parts are conjunc-

tions of statements which, besides testing for the

presence of particular outgoing action commands in

the agent’s Action Subsystem, can also test the truth

values of various items of the agent’s current internal

state — in particular, its current beliefs, desires, and

intentions. Suppressor rules’ action parts consist of

operations to prevent particular action commands from

being fed through to the agent’s effectors. In Fig. 2, for

example, the suppressor control rule suppressor-

rule-3 is used to prevent layer R from reacting to

(steering away from) a lane marking object whenever

the agent’s current intention is to overtake some other

agent that is in front of it.

Any number of censor control rules can fire (and

remove selected control layer input) when these are

applied at the beginning of a synchronization

timeslice. Suppressor control rules, on the other hand,

are assumed to have been crafted by the agent’s pro-

grammer in such a way that (i) at most one will fire in

any given situational context (an agent’s situational

context is taken to be the combination of its perceptual

input set and its current internal BDI state); and (ii) at

most one action command will remain in the Action

Subsystem after the suppressor control rule’s action

part has been executed. By crafting suppressor control

rules in this way, a TouringMachine’s effectors can be

guaranteed to receive no more than one action com-

mand to execute during any given timeslice.

Mediation remains active at all times and is

largely “transparent” to the layers: each layer acts as if

it alone were controlling the agent, remaining largely

unaware of any “interference” — either by other layers

or by the rules of the control framework — with its

own inputs and outputs. The overall control frame-

work thus embodies a real-time opportunistic

scheduling regime which, while striving to service the

censor-rule-1:

if entity(obstacle-6) ∈  Perception-Buffer
then

remove-sensory-record(layer-R , entity(obstacle-6))

suppressor-rule-3:

if action-command(layer-R-rule-6*,

change-orientation(_))† ∈  Action-Buffer
and

current-intention(start-overtake)

then

remove-action-command(layer-R , change-orientation(_))

and

remove-action-command(layer-M, _)

* layer-R-rule-6 is the reactive (layer R) rule which is invoked in order to avoid

crossing a path lane marking.
† “_” simply denotes a don’t-care or anonymous variable.

Fig. 2. Two example control rules: censor-rule-1 and suppressor-rule-3.



tecture has been designed through integrating a

number of reactive and suitably designed deliberative

control functions. Before addressing aspects of the

rationale behind this design, a brief description of the

architecture’s main features and operation will follow.

2 TouringMachines

Implemented as a number of concurrently-operating,

latency-bounded, task-achieving control layers, the

TouringMachine architecture is able to produce a

number of reactive, goal-directed, reflective, and pre-

dictive behaviors — as and when dictated by the

agent’s internal state and environmental context. In

particular, TouringMachines (see Fig. 1) comprise

three such independently motivated layers: a reactive

layer R for providing the agent with fast, reactive

capabilities for coping with events its higher layers

have not previously planned for or modelled (a typical

event, for example, would be the sudden appearance of

some hitherto unseen agent or obstacle); a planning

layer P for generating, executing, and dynamically

repairing hierarchical partial plans (which are used by

the agent, for example, when constructing naviga-

tional routes to some target destination); and a

reflective-predictive or modelling layer M for con-

structing behavioral Belief-Desire-Intention (BDI)

models of world entities, including the agent itself,

which can be used as a platform for explaining

observed behaviors and making predictions about pos-

sible future behaviors (Ferguson 1995).

Each control layer is designed to model the

agent’s world at a different level of abstraction and

each is endowed with different task-oriented capabili-

ties. Also, because each layer directly connects world

perception to action and can independently decide if it

should or should not act in a given state, frequently

one layer’s proposed actions will conflict with those

of another; in other words, each layer is an approxi-

mate machine and thus its abstracted world model is

necessarily incomplete. As a result, layers are medi-

ated by an enveloping control framework so that the

agent, as a single whole, may behave appropriately in

each different world situation.

Implemented as a combination of inter-layer mes-

sage passing and context-activated, domain-specific

control rules (see Fig. 1), the control framework’s

mediation enables each layer to examine data from

other layers, inject new data into them, or even

remove data from the layers. (The term data here cov-

ers sensed input to and action output from layers, the

contents of inter-layer messages, as well as certain

rules or plans residing within layers.) This has the

effect of altering, when required, the normal flow of

data in the affected layer(s). So, in a road driving

domain for example, the reactive rule in layer R to pre-

vent an agent from straying over lane markings can,

with the appropriate control rule present, be overrid-

den should the agent embark on a plan to overtake the

Fig. 1. A TouringMachine’s mediating control framework.
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Abstract

This paper describes an architecture for control-

ling autonomous agents, building on previous

work addressing reactive and deliberative control

methods. The proposed multi-layered architecture

allows a resource-bounded, goal-directed agent to

reason predictively about potential conflicts by

constructing causal theories which explain other

agents’ observed behaviors and hypothesize their

goals and intentions; at the same time it enables

the agent to operate autonomously and to react

promptly to changes in its real-time physical envi-

ronment. A number of criteria which influenced

the design and implementation of the architecture,

in particular its action control component, are also

discussed.1

1 Introduction

An integrated agent architecture, Drummond and Kael-

bling (Drummond & Kaelbling 1990) suggest, is a

theory or paradigm by which one may design and pro-

gram intelligent agents. Typically targeted for use in

dynamic, unpredictable, and often multi-agent envi-

ronments, an intelligent agent can be regarded as a

structured collection of sensors, computers, and effec-

tors; in this structure, the sensors measure conditions in

the world, the computers process the sensory informa-

tion, and the effectors take action in the world. Since

changes in the world realized by the agent's effectors

will close the loop to the agent's sensors, the agent can

be described as being embedded in its environment.

A number of different integrated architectures have

been proposed recently, each one aimed at providing

agents with a particular level of intelligent, autono-

mous control. Broadly speaking, the different

approaches can be classified according to the mecha-

nism for action control or selection which the agent

uses when determining what to do next. In particular, if

the agent selects actions by explicitly deliberating upon

1. 1. This research was conducted while the author was a

doctoral candidate at the Computer Laboratory, University of

Cambridge, Cambridge, UK.

the various options that are present (for example, with

the use of an internal symbolic world model, via a

search of its plan space, or by considering the expected

utility of available execution methods) the agent can be

considered deliberative (Durfee & Montgomery 1990;

Shoham 1990; Vere & Bickmore 1990). Alternatively,

if the agent's choice of action is situationally deter-

mined   in other words, pre-programmed or in some

way “hardwired'' to execute given the occurrence of a

particular set of environmental conditions   then they

can be described as non-deliberative or reactive (Agre

& Chapman 1987; Brooks 1991; Maes 1994).

Now, while intelligent agents must undoubtedly

remain reactive in order to survive, some amount of

strategic or predictive decision-making will also be

required if agents are to handle complex goals while

keeping their long-term options open. On the other

hand, agents cannot be expected to model their sur-

roundings in every detail as there will simply be too

many events to consider, a large number of which will

be of little or no relevance anyway. Not surprisingly, it

is becoming widely accepted that neither purely reac-

tive nor purely deliberative control techniques are

capable of producing the range of robust, flexible

behaviors desired of future intelligent agents. What is

required, it would seem, is a hybrid architecture that

can cope with uncertainty, react to unforeseen inci-

dents, and recover dynamically from poor decisions.

All of this, of course, on top of accomplishing whatever

tasks it was originally assigned to do.

This paper is concerned with the design and imple-

mentation of an integrated agent control architecture,

the TouringMachine architecture (Ferguson 1992; Fer-

guson 1994; Ferguson 1995), suitable for controlling

and coordinating the actions of autonomous rational

agents embedded in a partially-structured, dynamic,

multi-agent world. Upon carrying out an analysis of the

intended TouringMachine task domain — that is, upon

characterizing those aspects of the intended real-time

physical navigation domain that would most signifi-

cantly constrain the TouringMachine agent design —

and after due consideration of the requirements for pro-

ducing autonomous, effective, robust, and flexible

behaviors in such a domain, the TouringMachine archi-


