
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings of the International Symposium on Empirical Software Engineering
and Measurement (ESEM 2007), 2007

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=f51984e9-7655-4cb1-bb76-7c4e787c348f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=f51984e9-7655-4cb1-bb76-7c4e787c348f

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Cost-Effectiveness Indicator for Software Development
Erdogmus, Hakan

Cost-Effectiveness Indicator for Software

Development *

Erdogmus, H.
2007

* Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). September 20, 2007. NRC
49367.

Copyright 2007 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables
from this report, provided that the source of such material is fully acknowledged.

A cost effectiveness indicator for software development

Hakan Erdogmus

NRC Institute for Information Technology

Ottawa, Canada

Hakan.Erdogmus@nrc.gc.ca

Abstract
Product quality, development productivity, and

staffing needs are main cost drivers in software

development. The paper proposes a one-stop cost-

effectiveness indicator that combines these three cost

drivers through an economic criterion.

1. Introduction
Tradeoffs between development productivity and

product quality make it hard to assess the cost-

effectiveness of software development, both across

software development projects and across development

techniques and practices. Previous research confirms

the variability in quality and productivity [1], and the

tension between them [2]. This paper proposes an

indicator that reconciles this tension by aggregating

software development’s main cost drivers [3] -- team

productivity, staffing needs, and product quality -- into

a single coherent quantity. The indicator, called

breakeven multiple, allows comparison among projects

and development techniques based on their relative

cost-effectiveness. The indicator incorporates

productivity through its impact on direct development

costs and product quality through its impact on indirect

or downstream costs associated with rework [4].

Economic metrics for software development have

existed since the late nineties. Erdogmus [5]

developed a cost-benefit model based on net present

value for comparing software initiatives. Muller and

Padberg [6] adapted this model to evaluate extreme

programming projects. Erdogmus and Williams [7]

later combined net present value with breakeven

analysis to derive an economic feasibility metric for

pair programming. Padberg and Muller [8] used a

similar approach in their own analysis of the same

practice. Wagner [4] recently proposed an economic

efficiency model for quality that aggregates costs and

benefits of quality activities into a return-on-

investment metric.

The work presented here builds on the metric

defined by Erdogmus and Williams [7] for comparing

two practices. It both generalizes and simplifies this

metric, allowing more robust, multi-way comparison.

2. Basic Concepts
A project is work undertaken by a team. A project’s

output is a partial or complete software product with

working features and no known issues that require

resolution. A project comprises production and rework

activities. Production refers to all work that leads to

the initial external release of parts or whole of a

usable, but not necessarily perfect, product. Production

results in a product that may contain issues requiring

resolution. The output of production is the project’s

nominal output. Rework refers to all work that resolves

any identified issues in the nominal output. Rework

transforms a released imperfect product into a finished

product free of such issues. After rework, nominal

output becomes the project’s real output.

Product quality, or simply quality, refers to absence

of issues in a project’s output. Think of an issue as a

defect or an undesirable property or behavior that

incurs some latent cost, or prevents the benefits of a

product from being realized as intended. Issues are

discovered post-production and require resolution.

They may relate to functionality, reliability, usability,

maintainability or other external attributes. Rework

captures cost of poor quality.

Schedule is the duration of an activity, measured in

calendar time. Effort is the labor cost of an activity,

measured in person-time.

3. Derived Measures
The following derived measures can be obtained

from the base measures of nominal output, production

effort, rework effort, issue count and staffing profile

(salary loading of project as a function of schedule):

Load factor (L) quantifies a project’s average

staffing load based on the staffing profile, in terms of a

base salary’s a multiple.

Production speed (p) captures the production

component of team productivity. It is the average

delivery speed of nominal output by the project:

Lp ×=
effortt Developmen

output Nominal

Issue density (d) captures the level of rework that

the released nominal product requires. It is the average

issue count of a unit of nominal output.

Resolution speed (r) captures the rework

component of team productivity. It is the average rate

at which the project resolves issues in a nominal

product.

4. Derivation of the indicator
Production efficiency is the ratio of production

effort to the total effort. A project that is 100%

efficient does not perform any rework, and its nominal

productivity effectively equals its real productivity. A

project having a production speed of p output units per

unit schedule, an issue density of d issues per unit

output, a resolution speed of r issues per unit schedule,

has a production efficiency, ε, of r/(r + pd). If V

denotes the hypothetical value earned by a single unit

of real output, then for each unit schedule the project

on average earns a value of Vpε.

Now suppose S is the base salary of a developer. If

the project has a load factor of L persons, it incurs for

each unit of schedule a cost of SL. Then the average

net value, NV, earned by project per unit schedule is

Vpε – LS. Of interest is the minimum level of the

quaintly V that allows the project to break even.

Solving the equation NV = 0 for V yields this

breakeven unit value. Thus BUV = min{ V | Vpε – LS

= 0 } = LS/pε.
BUV combines productivity and quality as desired,

but it still depends on S. Normalizing the base salary S

with respect to BUV results in a more compact

indicator called the breakeven multiple, or BM, where:

BM = S/BUV = pε/L

BM expresses the base salary S in terms of a

multiple of BUV, but it does not depend on S. Since S

is invariant within and across projects in the same

context, if a project’s BM increases, the project

requires a lower unit value to break even, and the

project’s cost-effectiveness and profitability increase

as a result. A more intuitive interpretation of BM relies

on its unit. BM is measured in output per person-time,

the same unit as resource productivity. BM is indeed

nominal calendar productivity adjusted by efficiency

and de-normalized with respect to resource load.

Therefore, it can be thought of as the real resource

productivity of a production process.

5. Advantages, Limitations, and Uses
BM is an indicator that aggregates productivity,

quality, and staffing needs into a single, simple

quantity. It makes possible to compare projects with

opposite productivity and quality characteristics, thus

reconciling the underlying trade-offs. BM is

empirically determined through combining

interdependent measures, but does not express a

natural relationship among these measures.

Through alternative derivations, BM captures both

cost-effectiveness and real (as opposed to nominal)

productivity, both of which admit intuitive

interpretations. It is also sound with respect to standard

financial theory under the assumption of continuous

incremental delivery [7].

BM requires simple base measures to be collected

about a project. It can be customized for a given

context by appropriately choosing the underlying base

measures. A serious limitation of BM is its dependence

on the unit of the particular output measure used. Thus

projects having different output measures are not

comparable by this indicator. The base measures of

output and issue count should be interpretable on a

ratio scale for realistically large ranges. Particularly

problematic is the situation when base measures are

highly variable. Software unfortunately does not admit

a universal and uniform output measure. Although the

ideal output measure is delivered business value, either

size measures such as lines of code (low-level) and

function points (high-level) or requirements-oriented

measures like use-cases and stories are adopted as

proxies. However, each proxy has advantages and

disadvantages [9]. Finding portable, meaningful, sound

measures of size, functionality, productivity and

quality has been an elusive endeavor.

The breakeven multiple has two intended uses: (1)

as a high-level, one-stop performance indicator inside

a portfolio of projects; and (2) as a one-stop dependent

variable in empirical studies of software development

practices. In experimental contexts, BM’s limitations

can be alleviated through study design.

6. Application Example
As an example, consider test-driven development

(TDD), a coding technique in which development tasks

are driven by unit tests written before production code.

The example demonstrates BM’s use in conjunction

with sensitivity analysis.

An empirical study by Erdogmus, Morisio, and

Torchiano [10] evaluated the effects of writing unit

tests before production code (Test-First) relative to

writing units tests after production code (Test-Last).

The study measured the average nominal productivity

and product quality of two groups performing a

programming task with a set of incremental

requirements. The study measured external program

quality (through failing acceptance tests) and

production effort, but not rework productivity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
%

 |

0
%

1
6
%

 |

1
4
%

2
7
%

 |

2
5
%

3
6
%

 |

3
3
%

4
2
%

 |

3
9
%

4
8
%

 |

4
5
%

5
3
%

 |

4
9
%

5
6
%

 |

5
3
%

6
0
%

 |

5
7
%

6
2
%

 |

5
9
%

6
5
%

 |

6
2
%

Production Efficiency: Test-Last | Test-Firs t

B
re

a
k
e
v
e
n

 M
u

lt
ip

le

Test-Last

Test-First

Figure 2. Breakeven multiples for the TDD study as a

function of the resolution speed.

To calculate the two groups’ BM values, we treat

them as two projects, setting the output measure to

number of completed stories. The measure of

production speed is stories per hour, which is readily

adoptable. For the quality measure, we equate a failing

acceptance test to an issue, and calculate issue density

in failures per story. The load is constant since the two

techniques were executed by single programmers.

Since the study did not measure rework

productivity, we fix the production speed of Test-Last,

and estimate the resolution speed of Test-First by

applying its observed 28% nominal productivity speed-

up. Subsequently, we vary Test-Last’s resolution

speed, determine the corresponding Test-First

resolution speed, compute the corresponding

production efficiencies, and finally plot the BM values

against the resulting production efficiency pairs. The

chart in Figure 2 shows this analysis. The analysis

suggests an increasing cost-effectiveness for the Test-

First group relative to the Test-Last group as efficiency

grows.

7. Summary
The breakeven multiple is an aggregate economic

indicator for software development. It reduces what

would ordinarily be multi-criteria comparisons based

on separate quality, productivity, and staffing measures

into single-criterion comparisons based on cost-

effectiveness. It is indented for use as a high-level

performance indicator for software projects and as a

dependent variable in empirical studies of software

development.

BM does not express a functional-empirical

relationship among the base measures. Sensitivity

analyses should be conducted with the recognition of

the base measures’ mutual dependence in mind.

Measurement issues constitute BM’s main limitation.

Availability of proper and meaningful base measures,

ability to accurately capture them, and dependence on

the output measure limit BM’s applicability and

portability.

8. References
[1] K. Maxwell and P. Forselius, "Benchmarking

software development productivity," IEEE

Software, pp. 80-88, 2000.

[2] A. MacCormack, C. F. Kemerer, M.

Cusumano, and B. Crandall, "Trade-offs

between productivity and quality in selecting

software development practices," IEEE

Software, vol. Sep/Oct, pp. 78-85, 2003.

[3] B. W. Boehm and P. N. Papaccio,

"Understanding and controlling software

costs," IEEE Transactions on Software

Engineering, vol. 14, pp. 1462-1477, 1988.

[4] S. Wagner, "A literature survey of the quality

economics of defect-detection techniques,"

presented at International Symposium on

Empirical Software Engineering, 2006.

[5] H. Erdogmus, "Comparative evaluation of

software development strategies based on Net

Present Value," presented at First ICSE

Workshop on Economics-Driven Software

Engineering Research, Los Angeles,

California, 1999.

[6] M. Müller and F. Padberg, "On the economic

evaluation of XP projects," presented at

Jouint 9th European Software Engineering

Conference and 11th ACM SIGSOFT Int'l

Symposium on Foundations of Software

Engineering, Helsinki, Finland, 2003.

[7] H. Erdogmus and L. Williams, "The

Economics of Software Development by Pair

Programmers," The Engineering Economist,

vol. 48, 2003.

[8] F. Padberg and M. Müller, "Analyzing cost

and benefits of pair programming," presented

at 9th International Software Metrics

Symposium, 2003.

[9] M. Asmild, J. C. Paradi, and A. Kulkarni,

"Using data envelopment analysis in sofware

development productivity measurement,"

Software Process Improvement and Practice,

vol. 11, pp. 561-572, 2006.

[10] H. Erdogmus, M. Morisio, and M. Torchiano,

"On the Effectiveness of the Test-First

Approach to Programming," IEEE

Transactions on Software Engineering, vol.

31, pp. 226-237, 2005.

