Résumé | The solid oxide fuel cell is an electro-chemical device which converts chemical energy into electricity and heat. To compete in today’s market, design improvements, in terms of performance and life cycle, are required. Numerical prototypes can accelerate design and development progress. In this programme of research, a three-dimensional solid oxide fuel cell prototype, openFuelCell, based on open-source computational fluid dynamics software was developed and applied to a single cell. Transport phenomena, combined with the solution to the local Nernst equation for the open-circuit potential, as well as the Kirchhoff-Ohm relationship for the local current density, allow local electro-chemistry, fluid flow, multi-component species transport, and multi-region thermal analysis to be considered. The detailed physicochemical hydrodynamics included porous electrodes and electro-chemical effects. The openFuelCell program is developed in an object-oriented open-source C++ library. The code is available at http://openfuelcell.sourceforge.net/. The paper also describes domain decomposition techniques considered in the context of highly efficient parallel programming. |
---|