Résumé | This work investigates the application of a solid anolyte microbial fuel cell (saMFC) as a long-lasting source of electricity for powering electronic devices. Broadly available biodegradable materials such as humus, cattle manure, peat moss, and sawdust are evaluated as solid anolytes. The initial comparison shows significantly higher power production in the saMFC operated using humus as compared to other solid anolytes. At the same time, power production in the humus-based saMFC is found to decline after about 40 days of operation, while the sawdust MFC demonstrates stable performance over the test period. Following this initial comparison, a combined humus - sawdust anolyte is developed to increase saMFC life span. The optimized saMFC demonstrates stable power production for over nine months. Furthermore, power production in the saMFC is maximized by using an intermittent connection to an electrical load (on/off operation) and optimizing the connection/disconnection times. These results demonstrate the feasibility of utilizing solid anolytes for developing inexpensive and long-lasting biobatteries operated on renewable carbon sources. |
---|