Auteur | Rechercher : Chen, Boxing1; Rechercher : Cherry, Colin1; Rechercher : Foster, George1; Rechercher : Larkin, Samuel1 |
---|
Affiliation | - Conseil national de recherches du Canada. Technologies de l'information et des communications
|
---|
Format | Texte, Article |
---|
Conférence | The First Workshop on Neural Machine Translation, August 4, 2017, Vancouver, BC, Canada |
---|
Résumé | In this paper, we propose a new domain adaptation technique for neural machine translation called cost weighting, which is appropriate for adaptation scenarios in which a small in-domain data set and a large general-domain data set are available. Cost weighting incorporates a domain classifier into the neural machine translation training algorithm, using features derived from the encoder representation in order to distinguish in-domain from out-of-domain data. Classifier probabilities are used to weight sentences according to their domain similarity when updating the parameters of the neural translation model. We compare cost weighting to two traditional domain adaptation techniques developed for statistical machine translation: data selection and sub-corpus weighting. Experiments on two large data tasks show that both the traditional techniques and our novel proposal lead to significant gains, with cost weighting outperforming the traditional methods. |
---|
Date de publication | 2017-08-04 |
---|
Maison d’édition | Association for Computational Linguistics |
---|
Dans | |
---|
Langue | anglais |
---|
Publications évaluées par des pairs | Oui |
---|
Numéro NPARC | 23002215 |
---|
Exporter la notice | Exporter en format RIS |
---|
Signaler une correction | Signaler une correction (s'ouvre dans un nouvel onglet) |
---|
Identificateur de l’enregistrement | 328f63b3-c8d0-4c4a-bd21-47ef78e5e696 |
---|
Enregistrement créé | 2017-09-06 |
---|
Enregistrement modifié | 2020-03-16 |
---|