Téléchargement | - Voir le manuscrit accepté : Detection of potato diseases using image segmentation and multiclass support vector machine (PDF, 1.0 Mio)
|
---|
DOI | Trouver le DOI : https://doi.org/10.1109/CCECE.2017.7946594 |
---|
Auteur | Rechercher : Islam, Monzurul; Rechercher : Dinh, Anh; Rechercher : Wahid, Khan; Rechercher : Bhowmik, Pankaj1 |
---|
Affiliation | - Conseil national de recherches du Canada. Développement des cultures et des ressources aquatiques
|
---|
Format | Texte, Article |
---|
Conférence | IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), 30 April-3 May 2017, Windsor, ON, Canada |
---|
Sujet | SVM; disease detection; plant Phenotyping |
---|
Résumé | Modern phenotyping and plant disease detection provide promising step towards food security and sustainable agriculture. In particular, imaging and computer vision based phenotyping offers the ability to study quantitative plant physiology. On the contrary, manual interpretation requires tremendous amount of work, expertise in plant diseases, and also requires excessive processing time. In this work, we present an approach that integrates image processing and machine learning to allow diagnosing diseases from leaf images. This automated method classifies diseases (or absence thereof) on potato plants from a publicly available plant image database called `Plant Village'. Our segmentation approach and utilization of support vector machine demonstrate disease classification over 300 images with an accuracy of 95%. Thus, the proposed approach presents a path toward automated plant diseases diagnosis on a massive scale. |
---|
Date de publication | 2017-06-15 |
---|
Maison d’édition | IEEE |
---|
Dans | |
---|
Langue | anglais |
---|
Publications évaluées par des pairs | Oui |
---|
Numéro du CNRC | NRC-ACRD-56316 |
---|
Numéro NPARC | 23002103 |
---|
Exporter la notice | Exporter en format RIS |
---|
Signaler une correction | Signaler une correction (s'ouvre dans un nouvel onglet) |
---|
Identificateur de l’enregistrement | 5ec843d4-a03b-4e60-ae51-37e600fef16d |
---|
Enregistrement créé | 2017-08-18 |
---|
Enregistrement modifié | 2020-06-04 |
---|