Résumé | For aerospace manufacturing, the perseverance for improving performance (high strength to density ratio) and reducing weight and costs has motivated consideration of welding techniques applicable to aluminum alloys. During fusion welding of aluminum alloy (AA) 2024, the avoidance of defects (e.g., porosity, oxides, solidification cracking, undercutting) and the optimization of the microstructureproperty characteristics are of critical concern. In this work, AA2024 was electron beam (EB) welded as part of a study to determine the influence of parametric conditions on the characteristics of the weldment to optimize the joining process. Specifically, the evolution in the weld geometry, microstructure and mechanical properties was examined as a function of the process conditions, including beam current, beam focus, beam oscillation, and welding speed. For optimized parametric conditions, microstructural examination of the joints revealed narrow fusion and heat-affected zones comprising of dendritic structures without the occurrence of defects that enabled a maximized joint efficiency. |
---|