DOI | Trouver le DOI : https://doi.org/10.1109/ICTON.2014.6876292 |
---|
Auteur | Rechercher : Cheben, P.; Rechercher : Janz, S.; Rechercher : Sabourin, N.; Rechercher : Xu, D.-X.; Rechercher : Ding, H.; Rechercher : Wang, S.; Rechercher : Schmid, J. H.; Rechercher : Delage, A.; Rechercher : Lapointe, J.; Rechercher : Sinclair, W.; Rechercher : Ma, P.; Rechercher : Logan, S.1; Rechercher : MacKenzie, R.; Rechercher : Liu, Q. Y.; Rechercher : Gilmour, M.; Rechercher : Halir, R.; Rechercher : Ramos, C. Alonso; Rechercher : Wanguemert-Perez, G.; Rechercher : Ortega-Monux, A.; Rechercher : Fernandez, I. Molina; Rechercher : Le Roux, X.; Rechercher : Laurent, L.; Rechercher : Velasco, A. Vilafranca; Rechercher : Calvo, M. L. |
---|
Affiliation | - Conseil national de recherches du Canada. Thérapeutique en santé humaine
|
---|
Format | Texte, Article |
---|
Conférence | 2014 16th International Conference on Transparent Optical Networks (ICTON), 6-10 July 2014, Graz, Austria |
---|
Résumé | The silicon photonic wire evanescent field (PWEF) sensor platform offers the advantages of small sensor size, high levels of function integration, and low cost manufacturing that comes with the use of established semiconductor fabrication processes. The technology should be fully compatible with existing infrastructure in molecular analysis and research and the manufactured sensor array chip cost should be low enough that the chips can be considered disposable. Furthermore, since many applications require simultaneous monitoring of many different simultaneous binding reactions, the possibility of integrating tens or even hundreds of independent molecular sensors on a single disposable sensor chip is very compelling. We present an overview of our multiplexed photonic wire sensor chip and a reader instrument that allows up to 128 independent binding reactions to be monitored simultaneously. A complete photonic wire molecular biosensor microarray chip architecture and supporting instrumentation is discussed. This microarray system is used to demonstrate a multiplexed assay for serotyping E. coli bacteria based on polyclonal antibody probe molecules. A coherent detection scheme that enables direct read-out of the optical phase and an order of magnitude enhancement of sensitivity compared to conventional detection is also discussed. Finally, we present advances in Fourier-transform interferometer arrays for spectroscopic sensing. A planar waveguide Fourier-transform spectrometer with densely arrayed Mach-Zehnder interferometers is presented. Subwavelength gratings are used to produce an optical path difference without waveguide bends. The fabricated device comprises of an array of 32 Mach-Zehnder interferometers, which produce a spatial interferogram without any moving parts, yielding a spectral resolution of 50 pm and a free-spectral range of 0.78 nm. As a result of similar propagation losses in subwavelength grating waveguides and conventional strip waveguides, loss imbalance is minimized and high interferometric extinction ratio of -25 to -30 dB is obtained. Furthermore, phase and amplitude errors arising from normal fabrication variation are compensated by the spectral retrieval process using calibration measurements. |
---|
Date de publication | 2014-08-14 |
---|
Maison d’édition | IEEE |
---|
Dans | |
---|
Langue | anglais |
---|
Publications évaluées par des pairs | Oui |
---|
Numéro NPARC | 23002067 |
---|
Exporter la notice | Exporter en format RIS |
---|
Signaler une correction | Signaler une correction (s'ouvre dans un nouvel onglet) |
---|
Identificateur de l’enregistrement | e3549a63-1a28-4584-b714-ea8c34690ad8 |
---|
Enregistrement créé | 2017-08-02 |
---|
Enregistrement modifié | 2020-04-22 |
---|