Téléchargement | - Voir la version de l’auteur : Bohm trajectories and the tunneling time problem (PDF, 2.2 Mio)
|
---|
DOI | Trouver le DOI : https://doi.org/10.1007/978-3-642-80118-1_6 |
---|
Auteur | Rechercher : Leavens, C. R.1; Rechercher : Aers, G. C.1 |
---|
Affiliation du nom | - Conseil national de recherches du Canada. Institut des sciences des microstructures du CNRC
|
---|
Format | Texte, Chapitre de livre |
---|
Sujet | wave packet; transmission time; transmission probability; quantum potential; tunneling time |
---|
Résumé | Although many approaches based on conventional interpretations of quantum mechanics have been developed for calculating the average time taken for an electron to tunnel through a potential barrier, a satisfactory solution remains elusive. These approaches are discussed very briefly, focussing on the question of whether the concept of ‘tunneling time’ or, more generally, ‘mean transmission time’ is a meaningful one. Then it is shown that Bohm’s causal or trajectory interpretation provides a well-defined and unambiguous prescription for calculating transmission times that are conceptually meaningful within that interpretation. Results of such calculations are presented for single and double rectangular barriers. The time-modulated rectangular barrier is treated in detail to emphasize the importance of considering distributions of transmission and reflection times and not just the mean transmission time. Finally, the possibility of determining tunneling times experimentally is discussed. |
---|
Date de publication | 1996 |
---|
Maison d’édition | Springer |
---|
Dans | |
---|
Série | |
---|
Langue | anglais |
---|
Publications évaluées par des pairs | Oui |
---|
Numéro NPARC | 23002896 |
---|
Exporter la notice | Exporter en format RIS |
---|
Signaler une correction | Signaler une correction (s'ouvre dans un nouvel onglet) |
---|
Identificateur de l’enregistrement | e4761330-a83d-419e-9e02-a0d533310cb2 |
---|
Enregistrement créé | 2018-03-21 |
---|
Enregistrement modifié | 2020-06-11 |
---|