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The Yudin-Ivanov formula �Phys. Rev. A 64, 013409 �2001�� is generalized such that the most general

analytical expression for single-electron spectra, which includes the dependence on the instantaneous laser

phase, is obtained within the strong field approximation. No assumptions on the momentum of the electron are

made. Previously known formulas for single-electron spectra can be obtained as approximations to the general

formula.

DOI: 10.1103/PhysRevA.78.015405 PACS number�s�: 32.80.Rm, 32.80.Fb

Although an initial theoretical understanding of strong

field ionization was put forth by Keldysh �1� as early as

1964, many questions remain unresolved. As far as single-

electron ionization in the presence of a linearly polarized

laser field is concerned, there are two important topics. The

first, namely the ionization rate as a function of instanta-

neous laser phase, was studied in depth by Yudin and Ivanov

�2� �see also �3,4��. However, their result assumes zero initial

momentum of the liberated electron. Effects due to nonzero

initial momentum have yet to be included. The second topic

pertains to the single-electron spectra, that is, the ionization

rate as a function of the final momentum of an electron.

Despite much work on this topic �see, for example, Refs.

�5–7� and references therein� a universally accepted formula

is lacking and the discussion is still ongoing. Among the

most accurate results, Goreslavskii et al. �6� have obtained

an expression for the complete single-electron ionization

spectrum, but without consideration of laser phase. The

present paper derives a more general formula �see Eq. �8��
that includes the dependences on both the instantaneous laser

phase and the final electron momentum.

It is very convenient to formulate the Keldysh theory

in terms of the Dykhne adiabatic approximation, as was

presented in �8�. According to the Dykhne method �9–11�

�see also �8,12��, if the Hamiltonian of a system Ĥ�t� is a

slowly varying function of time t, and Ĥ�t��n�t�=En�t��n�t�
�n= i , f�, then the probability � of the transition �i→� f is

given by �atomic units �=me= �e�=1 are used throughout�

� = exp�− 2 Im�S��, S = �
t1

t0

�E f�t� − Ei�t��dt , �1�

where t1 is any point on the real axis of t, and t0 is the

transition point, i.e., a complex root of the equation

Ei�t0� = E f�t0� , �2�

which lies in the upper half-plane. If there are several roots,

we must choose one that is the closest to the real axis of t.

Moreover, there are no assumptions regarding the form of

the Hamiltonian.

Now we shall apply the Dykhne approach to the problem

of ionization of a single electron under the influence of a

linearly polarized laser field with the frequency � and the

strength F. The initial and final energies for such a process

are given by

Ei�t� = − Ip, �3a�

E f�t� =
1

2
�k + A�t��2, �3b�

where Ip is the ionization potential, k is the canonical mo-

mentum �measured on the detector�, and A�t�=−
F

� sin��t�.
According to Eq. �1�, the probability of one-electron ion-

ization � can be written as

� = exp�− 2 Im S�k�,k�,Ip�� ,

S�k�,k�,Ip� = �
t1

t0 �1

2
�k� + A�t��2 +

1

2
k

�

2 + Ip	dt , �4�

where S is the action. Equation �2� can be rewritten in terms

of S as

�

�t0

S�k�,k�,Ip� = 0. �5�

Note that the analogy between the saddle point S-matrix cal-

culations �13�, where transitions are calculated using station-

ary points of the action, and the Dykhne approach can be

seen from Eqs. �4� and �5�. The transition point is given by

�t0 = Arcsin
�� k�

�2Ip

+ i�1 +
k

�

2

2Ip

	� , �6�

where � is the Keldysh parameter

� =
�

F
�2Ip =� Ip

2Up

and Up= � F

2� �2 is the ponderomotive potential. In order to

extract the imaginary and real parts of this solution, the fol-

lowing equation �14� can be used:*dbondar@sciborg.uwaterloo.ca
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Arcsin�x + iy� = 2K� + arcsin � + i ln�� + ��2 − 1� , �7�

where K is an integer and


�

�
� =

1

2
��x + 1�2 + y2 	

1

2
��x − 1�2 + y2.

Using Eq. �7� in Eq. �4�, we obtain

���,k�,k�� 
 exp�−
2Ip

�
f��,k�,k��	 , �8�

where

f��,k�,k�� = �1 +
1

2�2
+

k2

2Ip

	arccosh � − ��2 − 1��

�
� 2

Ip

k� +
��1 − 2�2�

2�2 	 ,


�

�
� =

�

2
�� k2

2Ip

+
2

�

k�

�2Ip

+
1

�2
+ 1 	� k2

2Ip

−
2

�

k�

�2Ip

+
1

�2
+ 1	 ,

k2 = k�
2 + k

�

2.

Note that ��1. It must be stressed here that no assumptions
on the momentum of the electron have been made. However,
Eq. �8� has an exponential accuracy because the influence of
the Coulomb field of a nucleus cannot be accounted for by
the strong field approximation. The correct exponential
prefactor has been obtained within the Perelomov-Popov-
Terent’ev �PPT� approach �15–18�.

Similarly to the Yudin-Ivanov formula, Eq. �8� is valid if

the strength of the laser field F depends on time, F

→E0g�t�, where the envelope g�t� of the pulse is assumed to

be nearly constant during one-half of a laser cycle.

Equation �8� is the central result of this paper. In the fol-

lowing, this equation is applied to some special cases in or-

der to establish connections with previous results.

In the case of zero final momentum �k=0�, we have that

�=�1+�2 and �=0. In this limit we recover the original

Keldysh formula �1�

f��,0,0� = �1 +
1

2�2	arcsinh � −
�1 + �2

2�
.

In the tunneling limit ���1� the following formulas can

be obtained. Expanding the function f�� ,k� ,k�� in a Taylor

series up to third order with respect to � and setting k�=0,

we obtain

���,k�,0� � ���,0,0�exp
−
k�

2

3�
�3� . �9�

Equation �9� has been derived by a classical approach in Ref.

�19� �see also Ref. �20��. Discussions regarding the physical

origin of Eq. �9� are presented in Ref. �13�. Performing the

same expansion and setting k� =0, we obtain

���,0,k�� 
 exp
−
2�k

�

2 + 2Ip�3/2

3F
� . �10�

This equation has been derived in Ref. �20�. For small values

of k�, Eq. �10� can be approximated by

���,0,k�� � ���,0,0�exp
−
�2Ipk

�

2

F
� . �11�

Let us fix k�=0 and continue working in the tunneling

regime. For the case of high kinetic energy, such as k�
2
/2

�2Up and �k�
2
/ �4Up�−1
�, we obtain

� �� k�
2

4Up

, � � 1,

and the ionization rate � is given by

� 
 exp
−
2Up

�

� k�

2

2Up

+ 1	arccosh� k�
2

4Up

− 3� k�
2

4Up

� k�
2

4Up

− 1	�� . �12�

Equation �12� has been obtained in Ref. �5�.
Calculating the asymptotic expansion of the function

f�� ,k� ,0� for k�
2
/2
2Up, we obtain

A B

FIG. 1. The single-electron spectrum of a hydrogen atom at

800 nm; �a� at 1�1013 W /cm2 ��=3.376�; �b� at 6�1014 W /cm2

��=0.4357�.
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� 
 �F2 exp�3�

4�2k�
2 	k�

2
/2�

�k�
2
/2 
 2Up, k� = 0� . �13�

Equation �13� has been obtained for tunneling ionization in

Ref. �5�. Here, we have proved that Eq. (13) is valid for

arbitrary �. A similar formula can be derived for k��0,

� 
 �F2 exp�1�

4�2k
�

2 	k
�

2
/2�

�k
�

2
/2 
 2Up, k� = 0� , �14�

which is also valid for arbitrary values of the Keldysh pa-

rameter �.

Consider the asymptotic expansion of Eq. �8� for large

values of Ip �Ip
k2
/2�. In this case � and � can be approxi-

mated by

� � �1 + �2, � �
�

�1 + �2

k�

�2Ip

.

Using these equations, we obtain

f��,k�,k�� � f��,0,0� +
k2

2Ip

arcsinh � −
�

�1 + �2

k�
2

2Ip

.

�15�

Equation �15� has been reached within the PPT approach

�15–18� �see also �7��.
As mentioned above, Goreslavskii et al. �6� have derived

an expression for the spectral-angular distribution of single-

electron ionization without any assumptions on the momen-

tum of the electron. However, they have summed over saddle

points, i.e., the contribution from previous laser cycles has

been taken into account. On the contrary, we have not per-

formed any summation because we are interested in the most

recent contribution to ionization. Therefore, our result does

account for the phase dependence of the ionization rate, un-

like that of Ref. �6�.
To make the phase dependence explicit in Eq. �8�, we

apply the substitution

k� → k� − A�t� . �16�

The analytical expression for the ionization rate as a function

of a laser phase when k=0 has been achieved by Yuding and

Ivanov �2�. Thus, Eq. �8� is seen to be a generalization of the

Yudin-Ivanov formula.

Note that generally speaking, there is no unique and con-

sistent way of defining the instantaneous ionization rates

within quantum mechanics, and such a definition is a topic of

an ongoing discussion �see, e.g., Refs. �21,22� and references

therein�. However, the instantaneous ionization rates are in-

deed rigorously defined within the quasiclassical approxima-

tion �the Yudin-Ivanov formula�, and we have employed this

approach in the current paper. Alternatively, one can approxi-

mate the instantaneous ionization rates by the static ioniza-

tion rates at each point in time using the instantaneous value

of the laser field.

Lastly, we illustrate Eq. �8� for the case of a hydrogen

atom. The single-electron ionization spectra in the multipho-

ton regime ��
1� and in the tunneling regime ���1� are

plotted in Fig. 1�a� and Fig. 1�b�, respectively. One con-

cludes that the smaller �, the more elongated the single-

electron spectrum. We can notice that the maxima of both the

spectra are at the origin. Nevertheless, a dip at the origin has

been observed experimentally �23,24� in the parallel-

momentum distribution for the noble gases within the tun-

neling regime, and afterwards it has been investigated theo-

retically in Ref. �25� and references therein. However, such a

phenomenon is beyond Eq. �8�. The phase dependence of

ionization for different initial momenta, recovered by means

of Eq. �16�, is illustrated in Fig. 2 for selected positive mo-

menta. The curves for negative momenta are mirror reflec-

tions �through the axis �=0� of the corresponding positive

curves. Figure 3 shows that the cutoff of the single-electron

spectrum in the tunneling regime �the dashed line� corre-

sponds exactly to the kinetic energy 2Up, which is the maxi-

mum kinetic energy of a classical electron oscillating under

the influence of a linearly polarized laser field.

In summary, we have derived an expression for strong

field ionization including both the dependence on momenta

and instantaneous laser phase. Previous results �1,2,5,20� re-

garding strong field ionization can be recovered as special

cases of the general formula. The present result concerns

only the exponential dependence of the ionization process.

BA

FIG. 2. The plot of ��� ,k+
F

�
sin � ,0� for a hydrogen atom at

800 nm; �a� at 1�1013 W /cm2 ��=3.376�; �b� at 6�1014 W /cm2

��=0.4357�.

FIG. 3. The plot of ��� ,k� ,0� /��� ,0 ,0� for a hydrogen atom at

800 nm; the solid line: 1�1013 W /cm2 ��=3.376�; the dashed line:

6�1014 W /cm2 ��=0.4357�.
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However, supplementing our approach with the pre-

exponential factor taken from PPT �7,15–18�, the present re-

sult is the most general formula obtained within the quasi-

classical approximation.

The author is grateful to M. Spanner, G. L. Yudin,

and M. Yu. Ivanov for many valuable discussions

and remarks, and for outstanding comments on the manu-

script.
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