
Publisher’s version  /   Version de l'éditeur: 

2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 
pp. 1665-1671, 2015-12-17

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

https://doi.org/10.1109/BIBM.2015.7359925

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Data integration in machine learning
Li, Yifeng; Ngom, Alioune

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=b505f592-59d6-41fb-ad11-24604539569f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b505f592-59d6-41fb-ad11-24604539569f



2015 IEEE International Conference on Bioinformatics nd Biomedicine (BTBM) 

Data Integration in Machine Learning 

Yifeng Li 
Information and Communications Technologies 

National Research Council of Canada 

Ottawa, Ontario, Canada 

Email: yifeng.li@nrc-cnrc.gc.ca 

Abstact-Modern data generated in many ields are in a 
strong need of integrative machine learning models in order 
to better make use of heterogeneous information in decision 
making and knowledge discovery. How data from multiple 
sources are incorporated in a learning system is key step for a 
successful analysis. In this paper, we provide a comprehensive 
review on data integration techniques from a machine learning 
perspective. 
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I. INTRODUCTION 

In the big data era, data explosively grow in both volume 
and variety [1]. For example in biomedical research, it is not 
technically dificult to access a patient's traditional records 
(such as age, sex, weight, height, blood pressure, family 
history, imaging materials, and diagnostic symptoms) and 
high-throughput genotype data (such gene expression, non­
coding RNA transcription, DNA methylation, and whole­
genome sequence) under proper multi-party consents. On 
the one hand, this provides us an unprecedented opportunity 
to understand a complex object (or system) from multiple 
angles and make precise data-driven decisions. On the other 
hand, it poses a challenge for machine learning experts and 
data scientists to wisely optimize the use of these data. 

While it becomes impossible to use a human-based deci­
sion making procedure, intelligent learning systems play cru­
cial roles in the deluge of big data. When data from multiple 
sources are incorporated into a learning process, data fusion 
techniques can be classiied as either early, intermediate, or 
late integrations [2]. In early integration methods, all features 
are concatenated into a vector before itting an unsupervised 
or supervised model. In late integration, separate models 
are irst learned using their corresponding feature subsets, 
then their outputs are further combined to make the inal 
determination. An intermediate strategy globally involves 
data integration in a learning process. 

Data integration has been studied in related areas such 
as multisensor signal processing [3] and bioinformatics [4]. 
In the rontier of big data studies, it becomes indispensable 
to investigate the fundamental principles of integrating data 
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rom multiple sources. In this paper, we focus on funda­
mental integrative machine learning principles, particularly 
for classiication. In the following sections, we shall discuss 
simple feature concatenating, Bayesian methods, Bayesian 
networks, tree-based ensemble methods, multiple kernel 
learning, and deep neural networks. Hereafter, we use the 
phrase "data rom multiple sources" to denote any kinds of 
heterogeneous data that provide complementary information 
to characterize an object rom various aspects. Data rom 
multiple sources may have different data types, follow very 
diferent statistical distributions, possess different semantics, 
and sufer diferent levels of uncertainties. 

II. FEATURES CONCATENATION 

Concatenating features in a vector seems to be the 
"simplest" principle. It requires additional downstream pro­
cessing. Since data rom multiple sources have diferent 
types that may include continuous features, discrete features, 
characters, even graphics. Converting these features into 
acceptable types (e.g. continuous to discrete, categorical 
to 0-1 coding) is inevitable for certain classiiers. More­
over, data rom multiple sources are usually in diferent 
scales. Particularly for discriminative models, normalization 
or standardization may be necessary in order to speed up 
training and improve performance. This integrative strategy 
is commonly used in linear models such as support vector 
machines (SVMs) [5] and LASSO-based predictors [6]. 
Feature concatenation is the easiest (perhaps the oldest) 
strategy that glues all features together. However, this art 
often does not work well with modern data, which are 
either high dimensional or structural. Coarsely stitching all 
features together would lead to severe loss of key structural 
information. For instance, converting a text document into 
a bag of words will certainly ignore semantics that is 
obviously very important. Moreover, downstream process­
ing, such as normalization and transformation, after feature 
concatenating is often panic, even impossible. 

III. BAYESIAN METHODS 

From a Bayesian perspective, we can consider treating 
some features as prior knowledge. Suppose we separate the 
input features into prior features and regular features. The 



corresponding training data can thus be split as X = [P; R] 
accordingly. Suppose we deal with a two-class problem, that 
is Yn E {-I, +1}. For a sample Xn = [Pn; Tn], its class 
prior can be deined as a logistic function: 

e3TPn 
P(Yn = +lIPn,3) = 1 + e3TPn' (1) 

where 3 are the coeicients of the corresponding prior 
features, indicating their contributions to the class prior. 
Using the Bayesian theorem, the posterior can be written 
as 

p(y = +llx,p,O) = p(xlY = �
I
p(Ylp,O) 

(2) 

x p(xlY = +1, a+l)p(y = +llp, ) 
(3) 

where a+l is the parameter of the + 1 class-conditional 
distribution (likewise, a -1 is the parameter of the -1 
class-conditional distribution). The exact form of the c1ass­
conditional distribution p(xly, a+1) is formulated by certain 
models (such as mixture of Gaussians and naive Bayes). 
The model parameter 0 = {a+1' a_I, 3} can be learned 
from training data {X, y} by maximum likelihood or max­
imum a posteriori estimation. For instance, CENTIPEDE 
is an Bayesian mixture model developed for the prediction 
of transcription factor binding sites [7] by using position 
weight matrices score, evolutionary conservation score, and 
transcription start site proximity as prior knowledge, and 
ChIP-seq as regular features. In case of multi-class problems 
(that is Yn E {I,· .. ,C}), the class prior can be extended 
as a multinoulli distribution: 

he(p,O) = 
[P(Y = 

:
lIP, 0)] 

= c 
1 

[e-�!p]. 
. : e-3Jp 

. 

p(y = Clp, 0) c=l e-3,P 
(4) 

Then the parameter to be learned rom training data becomes 
{al,··· ,ac,3l,··· ,3c}. Bayesian methods are well­
known with their capability of incorporating various prior 
knowledge. However, it may be diicult to ind informative 
information as prior features. Furthermore, it is oten hard to 
assume proper class-conditional distributions, especially for 
complex systems. In case of many-class problems, inding 
a suitable class-conditional distribution for each individual 
class becomes unattainable in practice. 

IV. BAYESIAN NETWORKS 

Bayesian networks (BNs) [8] can learn on data of multiple 
sources. As a typical model of probabilistic graphical models 
(PGMs), a BN can be represented by {S, O}, where S de­
notes its graphical structure whose nodes represent variables 
and directed edges represent dependencies between pairs of 
variables, and 0 the parameters of the variables' conditional 
distributions. Suppose there are M visible variables (say 
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X = [Xl,··· ,XM]) and no latent variable, BN decom­
poses the probability of X to 

M 
p(X) = Ip(XiII(Xi)) (5) 

where I(Xi) are the parents of Xi. The dependency struc­
ture and parameter of the conditional distributions can be 
learned rom data. Given a learned BN, the values of 
invisible variables can be inferred rom partially observed 
data. The variables in a BN can be discrete [9], continuous 
[10], or a mixture of them [11]. Thus, variables of diferent 
types can be naturally integrated using BN. In the general 
procedure of applying BN for classiication (and regression) 
purpose (Figure 1a), the network (with the class variable 
being a node) can be learned rom labelled training data. 
The class of unlabelled samples can be inferred using the 
learned network [12]. Furthermore, BN can be applied to 
feature selection by only taking variables in the Markov 
blanket of the class node. For example in Figure la, features 
Xl, X2, X4, X5, X6 form the Markov blanket of the class 
node, thus they can be reported as key features. However, 
three obstacles challenge us to apply BNs in data integration. 
First, searching the optimal BN structure is a NP-complete 
problem [9]. Second, the number of parameters may be 
much larger than the sample size. Third, inference in a 
BN is intractable. This obstructs us from using BN for 
high-dimensional data. Thus, heuristic structure learning 
algorithms and restrictions (or assumptions) on the model 
structure and conditional distributions are usually made for 
high-dimensional data. The model structure is often assumed 
to be sparse. For example in Naive Bayes classiier [13] 
(Figure 1b), the features are assumed to be conditionally 
independent of each other given the class variable (say C) 
as common parent, so that the joint probability p( C, X) can 
be factorized as 

M 
p(C, X) = p(C) Ip(XiIC). 

i=l 
The class label can thus be inferred by 

p(ClX) = p(C,X) = p(C) n�lP(XiIC) 
p(X) p(X) 

(6) 

(7) 

Na·ive Bayes classiier is a slim and swit model because 
there is no need to learn the structure and the inference of 
class label is straightforward. Tree-augmented NaIve Bayes 
classiier [14] (Figure 1 c) relaxes the independence among 
features by a tree structure. It outperforms the Naive Bayes 
classiier but keeps the eiciency of model learning. 

V. DECISION TREES AND ENSEMBLE LEARNING 

A mixture of discrete and continuous features can be 
simultaneously fed into decision trees [15]. There is no 
need to normalize the features. Thus, decision trees should 



(a) General Bayesian network classiier. 
The class variable are treated as an ordi­
nary node. 

(b) NaiVe Bayes classiier. Features are 
assumed to be conditional independent 
given the class variable as their common 
parent. 

(c) Tree-augmented NaiVe Bayes classi­
ier. Sharing the class variable as parent, 
the features have a tree structure (in red). 

Figure 1: Bayesian network classiiers. 

be considered as integrative models. Decision trees for 
classiication or regression are representatives of rule-based 
learning. When recursively constructing the tree structure, 
a feature (even feature subset) that splits the classes the 
best is selected to create a node. At each node, rules 
are established to branch out different classes downstream. 
Diferent rom black-box models, the learned hierarchy of 
rules (tree) are interpretable. Decision trees can be applied 
to select features by ranking the features with respect to 
their summed improvements in class purity. In a decision 
tree with T internal nodes, the importance score of the i-th 
feature can be deined by s(Xi) = =l g(t)I(v(t) = i), 
where I (v( t) = i) E {O, I} indicates whether the i-th feature 
is selected in the t-th node to split the corresponding region, 
and g(t) is the gain of class purity measured, for example, 
by Gini index [15], [16]. Since each feature is used to 
learn decision rules, various data types (discrete, categorical, 
and continuous) are acceptable. The values of continuous 
variables are partitioned into intervals of diferent lengths, 
thus decision rules can be created for continuous variables 
of a variety of distributions. There is no need to standardize 
the input data. In fact, decision trees are invariant under 
feature scaling and transformation. However, decision trees 
are notorious with their high risk of overitting, thus pruning 
is a necessary remedy. Moreover, building a decision tree for 
high-dimensional data is very time-consuming. 

As a successful example of collective intelligence, ensem­
ble learning [17], [18] builds a population of weak learn­
ers for the state-of-the-art performance. Bagging [19] and 
Boosting [20], [21] are popular ensemble learning models 
where decision trees are often used as weak learners. While 
bagging simply combining the decisions of multiple weak 
learners, boosting tweaks the weak learners to focus on hard 
examples. 

Different from bagging, random forest quickly constructs 
decision trees by randomizing the picking of features at 
each node. When growing a tree in random forest, a single 
feature or a subset of features are randomly chosen to create 
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a branching node. Feature importance can be ranked by out­
of-bag (OOB) randomization or Gini index. In the former 
method, the importance score of the i-th feature is deined 
as the difference of OOB errors between using the original 
OOB samples and using the OOB samples where the values 
of the i-th feature are permuted. In the latter method, Gini 
indices [15] of the i-th feature in individual trees in the forest 
can be averaged as the importance score [16]. 

There are three ways to integrate data by ensemble 
learning. The irst way is to use the concatenated features as 
input of random forest. The second way is to build multiple 
trees for each data source, and then use all trees of all 
data sources to vote for the inal decision [22], [23] An 
example of using random forest is illustrated in Figure 2. 
More elegant combination methods are discussed in [24]. 
One of the advantages of this ensemble-learning based data 
integration is its good manipulability and interpretability. 
Class imbalance problems can be elegantly addressed by 
random forest in its bootstrapping [25]. Also, granularity of 
features can be carefully considered in the step of sampling 
features [26]. However, since it is a late-integration principle, 
the interactions of features rom separate sources cannot 
be detected. In the third way, meta-features learned rom 
diferent sources can be used to grow trees. This idea is 
rom West's group who incorporate both clinical factors 
and genomic data in predictive survival assessments [27]. 
A meta-feature (named meta-gene in [27]) is deined as the 
irst principal component of a cluster of genes grouped by k­
mean clustering. Then, the model grows a forest of statistical 
classiication and prediction trees. In each tree, features used 
in the nodes are decided by the signiicances of Bayesian 
factor tests on the features (meta-genes and clinical factors). 
Multiple signiicant features can be distributed in multiple 
trees so that the correlations between trees are reduced. The 
inal decision is determined by a weighted combination of 
the decisions of all trees, where the probabilities of trees 
are used as weights. One advantage of the meta-feature 
based ensemble model is that the information from diferent 
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Figure 2: Ensemble learning (e.g. random forest) integrates 
data rom multiple sources. 

sources can be incorporated in the model learning. Since 
the meta-features are used instead of the original features, 
complexity of trees can thus be reduced. 

VI. KERNEL LEARNING AND METRIC LEARNING 

Kernel matrix k(X, X), rather than the original input 
features, is only required as input of kernel methods. Thus, 
the problem of data integration is transformed to kernel 
integration. Multiple kenel leaning (MKL) [28] is an 
intermediate integration technique that irst computes kernel 
(or similarity) matrices separately for each of the multiple 
data sources, then combines these matrices to generate the 
kernel matrix to be used in a kernel model. Suppose there 
are K kernel functions, {kl (-, .), . .. , k K (-, .)}, representing 
K sources of data, x = {x(1), ... , X(K)}. The combined 
similarity between samples Xi and Xj can be computed by 

where 17 is either a linear or non-linear function. In the 
simplest case, it is a weighted linear combination of kernel 
matrices: 

K 
k(X, X) = L Aik(Xi, Xi), (9) 

i=1 
where A = [AI, ··· , AK 1 can be either assigned prior to 
learning, or determined in the procedure of learning. The pa­
rameter, ], can either be predeined, partially, or completely 
learned during training. Figure 3 shows an example of MKL­
based integration system. The individual similarity (kernel) 
matrix of a data source can be computed by an of-the­
shelf kernel function semantically sensible for the speciic 
data source or by sophisticated metric learning [29]. Metric 
learning [30], [31], [32] aims to learn a metric function rom 
data such that the distances between within-class samples 
are closer, and the distances between inter-class samples 
are farther. The key strength of kernel methods is that their 
optimizations are independent of the number of features, 
which is known as dimension-ree [33]. However, large-scale 
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optimization corresponding to a large sample size remains 
the main bottleneck. For example, an optimal MKL learning 
may be essentially a semideinite programming problem 
[34]. 

Data Source 1 Data Source 2 Data Source 3 

� 
---------- ---------- ----------, \. \. , 

I " " I 
,Metric Learning',Metric Learning',Metric Learning' • " " I 
' . -------- -" . --------.." .. --------..' 

� � � 
JJJ 

Kernel Learner 

Figure 3: Multiple kernel learning. Metric learning may be 
applied to learn suitable similarity matrices. 

VII. FEATURE EXTRACTION 

While it is often challenging to combine features in the 
original input space, the new features extracted by feature 
extraction methods can be easily combined. Illustrated in 
Figure 4, the idea is to extract new features rom each 
data source irst, and then combine these new features 
together. Finally, a classiier can be applied on the combined 
features. Depending on the nature of an individual data 
source, a feature extraction method learns the representations 
of samples in a new feature space. Matrix factorization 
methods, such as principal component analysis (PCA) [35], 
[36], factor analysis (FA) [37], [38], non-negative matrix 
factorization (NMF) [39], [40], [41], sparse representation 
(SR) [42], and tensor decomposition methods [43], [44], are 
commonly used feature extraction models. There are several 
beneits of using feature extraction in data integration. First, 
the natures of heterogeneous data from multiple sources 
can be separately well considered. In spite of the original 
data types, the new features in the corresponding feature 
spaces are usually numeric. Second, the high-dimensionality 
is dramatically reduced so that the downstream analysis will 
be more eicient. Third, extracting features separately for 
each data source implements the principle of divide-and­
conquer, thus computational complexity can be signiicantly 
reduced. Forth, relational data can be well incorporated by 
kernel feature extraction methods [45]. However, one pitfall 



of the feature-extraction based integrative principle is that 
the interactions (correlation) between features from difer­
ent sources cannot be considered in the feature extraction 
procedures. 

Final Decision 

Data Source 1 Data Source 2 Data Source 3 

Figure 4: Data integration procedure based on feature ex­
traction. 

In order to consider the interactions between features rom 
diferent sources, Bayesian matrix factorization methods 
can be applied to extract new features on the feature-wise 
concatenated matrix rom multiple sources. A key to realize 
it is to assume separate distributions with diferent variations 
for features in different scales. By inducing group-wise (that 
is source-wise) sparsity on the basis matrix (that is factor 
loading matrix) as in Bayesian group factor analysis (BGFA) 
[46] (see Figure 5), ubiquitous and source-speciic factors 
can be detected, which is beneicial to the understanding of 
the data. Bayesian canonical correlation analysis (BCCA) 
[47] is a special case of BGFA when there are only two 
data sources. 

VIII. DEEP NEURAL NETWORKS AND MULTI-MODAL 

LEARNING 

While the feature-extraction based integration principle, 
illustrated in Figure 4, is incapable of learning the inter­
actions between features rom different sources, the deep 
neural network [48] based multi-modal structure, illustrated 
in Figure 6, integrates the output of individual sub-networks 
in higher layers. The sub-networks provide the lexibility 
of choosing appropriate deep learning models respectively 
for individual data sources, such as deep belief net [49] 
for binary data, convolutional network [50] for image data, 
recurrent neural network [51] for speech signal, and deep 
feature selection [52] for choosing discriminative features. 
The sub-networks can be either directed or undirected. The 
whole model can be supervised or unsupervised. [53] is an 
example of multi-modal learning. When learning the model 
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:: 

Data from Multiple Sources Factor Loading Matrix Factor Score Matrix 

Figure 5: Data integration based on Bayesian group factor 
analysis. Zero blocks are marked in white. 

parameter, the sub-networks can be pretrained on diferent 
data sources, then the parameter of the whole integrative net­
work (including the integrative network and sub-networks) 
can be globally ine-tuned. This component-wise learning 
can signiicantly reduce the cost of computation. 

Figure 6: Deep neural network for multi-modal learning. 
Different deep learning models can be applied to the indi­
vidual data sources. The integrative network combines the 
information from the sub-networks. The model can be either 
directed or undirected; either supervised or unsupervised. 

IX. CONCLUSION 

Recent development in many areas, such as image pro­
cessing, computer vision, bioinformatics, social network 
mining, and inance, have a keen need for integrative ma­
chine learning models to incorporate data from multiple data. 
In this review, we investigate a variety of data integration 



principles from a machine learning perspective. Their basic 
ideas, structures, strengths, and limitations are discussed. 
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