Résumé | In this study, the effects of rosette nanotube (RNT) exposure on immune cell viability and function were investigated in vitro using the rat basophilic leukemia (RBL)-2H3 cell line. RBL-2H3 viability was decreased in a dose- and time-dependent manner after lysine-functionalized RNT (K-RNT) exposure. In addition, K-RNTs had a significant effect on RBL-2H3 degranulation. When K-RNT exposure was concurrent with IgE sensitization, 50 and 100 mg l−1 K-RNTs elicited a heightened degranulatory response compared with IgE alone. Exposure to 50 and 100 mg l−1 K-RNTs also caused degranulation in RBL-2H3 cells not sensitized with IgE (0 ng ml−1 IgE). Furthermore, in cells preexposed to K-RNTs for 2 h and subsequently washed, sensitized, and stimulated with IgE, a potentiated degranulatory response was observed. Using confocal laser scanning microscopy and a fluorescein isothiocyanate (FITC)-functionalized RNT construct (termed FITC1/TBL19-RNT), we demonstrated a strong and direct affiliation between RNTs and RBL-2H3 cell membranes. We also demonstrated cellular internalization of RNTs after 2 h of exposure. Together, these data demonstrate that RNTs may affiliate with the cellular membrane of RBL-2H3 cells and can be internalized. These interactions can affect viability and alter the ability of these cells to elicit IgE-FcεR mediated degranulation. |
---|